Verifying Linearizability via Optimized Refinement Checking

Linearizability is an important correctness criterion for implementations of concurrent objects. Automatic checking of linearizability is challenging because it requires checking that: (1) All executions of concurrent operations are serializable, and (2) the serialized executions are correct with re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering Jg. 39; H. 7; S. 1018 - 1039
Hauptverfasser: Yang Liu, Wei Chen, Liu, Y. A., Jun Sun, Shao Jie Zhang, Jin Song Dong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2013
IEEE Computer Society
Schlagworte:
ISSN:0098-5589, 1939-3520
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linearizability is an important correctness criterion for implementations of concurrent objects. Automatic checking of linearizability is challenging because it requires checking that: (1) All executions of concurrent operations are serializable, and (2) the serialized executions are correct with respect to the sequential semantics. In this work, we describe a method to automatically check linearizability based on refinement relations from abstract specifications to concrete implementations. The method does not require that linearization points in the implementations be given, which is often difficult or impossible. However, the method takes advantage of linearization points if they are given. The method is based on refinement checking of finite-state systems specified as concurrent processes with shared variables. To tackle state space explosion, we develop and apply symmetry reduction, dynamic partial order reduction, and a combination of both for refinement checking. We have built the method into the PAT model checker, and used PAT to automatically check a variety of implementations of concurrent objects, including the first algorithm for scalable nonzero indicators. Our system is able to find all known and injected bugs in these implementations.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0098-5589
1939-3520
DOI:10.1109/TSE.2012.82