Constructive Analysis of Eigenvalue Problems in Control under Numerical Uncertainty
The eigenvalue problem plays a central role in linear algebra and its applications in control and optimization methods. In particular, many matrix decompositions rely upon computation of eigenvalue-eigenvector pairs, such as diagonal or Jordan normal forms. Perturbation theory and various regulariza...
Uloženo v:
| Vydáno v: | International journal of control, automation, and systems Ročník 18; číslo 9; s. 2177 - 2185 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bucheon / Seoul
Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers
01.09.2020
Springer Nature B.V 제어·로봇·시스템학회 |
| Témata: | |
| ISSN: | 1598-6446, 2005-4092 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The eigenvalue problem plays a central role in linear algebra and its applications in control and optimization methods. In particular, many matrix decompositions rely upon computation of eigenvalue-eigenvector pairs, such as diagonal or Jordan normal forms. Perturbation theory and various regularization techniques help address some numerical difficulties of computation eigenvectors, but often rely on
per se
uncomputable quantities, such as a minimal gap between eigenvalues. In this note, the eigenvalue problem is revisited within constructive analysis allowing to explicitly consider numerical uncertainty. Exact eigenvectors are substituted by approximate ones in a suitable format. Examples showing influence of computation precision are provided. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 http://link.springer.com/article/10.1007/s12555-018-0571-2 |
| ISSN: | 1598-6446 2005-4092 |
| DOI: | 10.1007/s12555-018-0571-2 |