Constructive Analysis of Eigenvalue Problems in Control under Numerical Uncertainty

The eigenvalue problem plays a central role in linear algebra and its applications in control and optimization methods. In particular, many matrix decompositions rely upon computation of eigenvalue-eigenvector pairs, such as diagonal or Jordan normal forms. Perturbation theory and various regulariza...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of control, automation, and systems Ročník 18; číslo 9; s. 2177 - 2185
Hlavní autoři: Osinenko, Pavel, Devadze, Grigory, Streif, Stefan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bucheon / Seoul Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers 01.09.2020
Springer Nature B.V
제어·로봇·시스템학회
Témata:
ISSN:1598-6446, 2005-4092
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The eigenvalue problem plays a central role in linear algebra and its applications in control and optimization methods. In particular, many matrix decompositions rely upon computation of eigenvalue-eigenvector pairs, such as diagonal or Jordan normal forms. Perturbation theory and various regularization techniques help address some numerical difficulties of computation eigenvectors, but often rely on per se uncomputable quantities, such as a minimal gap between eigenvalues. In this note, the eigenvalue problem is revisited within constructive analysis allowing to explicitly consider numerical uncertainty. Exact eigenvectors are substituted by approximate ones in a suitable format. Examples showing influence of computation precision are provided.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
http://link.springer.com/article/10.1007/s12555-018-0571-2
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-018-0571-2