Semi-Supervised Learning for Low-cost Personalized Obstructive Sleep Apnea Detection Using Unsupervised Deep Learning and Single-Lead Electrocardiogram
Objective: Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder that can lead to a wide range of health issues if left untreated. This study aims to address the lack of research on personalized models for single-lead electrocardiogram (ECG)-based OSA detection, by proposing an...
Uložené v:
| Vydané v: | IEEE journal of biomedical and health informatics Ročník 27; číslo 11; s. 1 - 12 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!