Reasoning about Object-based Calculi in (Co)Inductive Type Theory and the Theory of Contexts
We illustrate a methodology for formalizing and reasoning about Abadi and Cardelli’s object-based calculi, in (co)inductive type theory, such as the Calculus of (Co)Inductive Constructions, by taking advantage of natural deduction semantics and coinduction in combination with weak higher-order abstr...
Saved in:
| Published in: | Journal of automated reasoning Vol. 39; no. 1; pp. 1 - 47 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Nature B.V
01.07.2007
Springer Verlag |
| Series: | Journal of Automated Reasoning |
| Subjects: | |
| ISSN: | 0168-7433, 1573-0670 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We illustrate a methodology for formalizing and reasoning about Abadi and Cardelli’s object-based calculi, in (co)inductive type theory, such as the Calculus of (Co)Inductive Constructions, by taking advantage of natural deduction semantics and coinduction in combination with weak higher-order abstract syntax and the Theory of Contexts. Our methodology allows us to implement smoothly the calculi in the target metalanguage; moreover, it suggests novel presentations of the calculi themselves. In detail, we present a compact formalization of the syntax and semantics for the functional and the imperative variants of the ς-calculus. Our approach simplifies the proof of subject deduction theorems, which are proved formally in the proof assistant Coq with a relatively small overhead. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0168-7433 1573-0670 |
| DOI: | 10.1007/s10817-006-9061-y |