Reasoning about Object-based Calculi in (Co)Inductive Type Theory and the Theory of Contexts

We illustrate a methodology for formalizing and reasoning about Abadi and Cardelli’s object-based calculi, in (co)inductive type theory, such as the Calculus of (Co)Inductive Constructions, by taking advantage of natural deduction semantics and coinduction in combination with weak higher-order abstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning Jg. 39; H. 1; S. 1 - 47
Hauptverfasser: Ciaffaglione, Alberto, Liquori, Luigi, Miculan, Marino
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Nature B.V 01.07.2007
Springer Verlag
Schriftenreihe:Journal of Automated Reasoning
Schlagworte:
ISSN:0168-7433, 1573-0670
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We illustrate a methodology for formalizing and reasoning about Abadi and Cardelli’s object-based calculi, in (co)inductive type theory, such as the Calculus of (Co)Inductive Constructions, by taking advantage of natural deduction semantics and coinduction in combination with weak higher-order abstract syntax and the Theory of Contexts. Our methodology allows us to implement smoothly the calculi in the target metalanguage; moreover, it suggests novel presentations of the calculi themselves. In detail, we present a compact formalization of the syntax and semantics for the functional and the imperative variants of the ς-calculus. Our approach simplifies the proof of subject deduction theorems, which are proved formally in the proof assistant Coq with a relatively small overhead.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0168-7433
1573-0670
DOI:10.1007/s10817-006-9061-y