Double Inertial Proximal Gradient Algorithms for Convex Optimization Problems and Applications
In this paper, we propose double inertial forward-backward algorithms for solving unconstrained minimization problems and projected double inertial forward-backward algorithms for solving constrained minimization problems. We then prove convergence theorems under mild conditions. Finally, we provide...
Uloženo v:
| Vydáno v: | Acta mathematica scientia Ročník 43; číslo 3; s. 1462 - 1476 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.05.2023
Springer Nature B.V School of Science,University of Phayao,Phayao 56000,Thailand |
| Vydání: | English Ed. |
| Témata: | |
| ISSN: | 0252-9602, 1572-9087 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose double inertial forward-backward algorithms for solving unconstrained minimization problems and projected double inertial forward-backward algorithms for solving constrained minimization problems. We then prove convergence theorems under mild conditions. Finally, we provide numerical experiments on image restoration problem and image inpainting problem. The numerical results show that the proposed algorithms have more efficient than known algorithms introduced in the literature. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0252-9602 1572-9087 |
| DOI: | 10.1007/s10473-023-0326-x |