Double Inertial Proximal Gradient Algorithms for Convex Optimization Problems and Applications

In this paper, we propose double inertial forward-backward algorithms for solving unconstrained minimization problems and projected double inertial forward-backward algorithms for solving constrained minimization problems. We then prove convergence theorems under mild conditions. Finally, we provide...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta mathematica scientia Ročník 43; číslo 3; s. 1462 - 1476
Hlavní autoři: Kankam, Kunrada, Cholamjiak, Prasit
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.05.2023
Springer Nature B.V
School of Science,University of Phayao,Phayao 56000,Thailand
Vydání:English Ed.
Témata:
ISSN:0252-9602, 1572-9087
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose double inertial forward-backward algorithms for solving unconstrained minimization problems and projected double inertial forward-backward algorithms for solving constrained minimization problems. We then prove convergence theorems under mild conditions. Finally, we provide numerical experiments on image restoration problem and image inpainting problem. The numerical results show that the proposed algorithms have more efficient than known algorithms introduced in the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0252-9602
1572-9087
DOI:10.1007/s10473-023-0326-x