Fuzzy Neural Pseudo Control With Prescribed Performance for Waverider Vehicles: A Fragility-Avoidance Approach
A fuzzy-neural-approximation-based pseudo nonaffine control protocol is proposed for waverider vehicles (WVs), which is capable of guaranteeing tracking errors with desired prescribed performance and rejecting the obstacle of fragility inherent to the traditional prescribed performance control (PPC)...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 53; číslo 8; s. 4986 - 4999 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A fuzzy-neural-approximation-based pseudo nonaffine control protocol is proposed for waverider vehicles (WVs), which is capable of guaranteeing tracking errors with desired prescribed performance and rejecting the obstacle of fragility inherent to the traditional prescribed performance control (PPC). The pseudo control is defined to approximate the nonaffine dynamics of WVs, while there is no need of model affinization. Furthermore, fuzzy neural approximators are combined with the adaptive compensation strategy to resist both system uncertainties and external disturbances. Especially, a new type of nonfragile prescribed performance, being able to self-adjust its prescribed funnel, is proposed to remedy the fragility defect associated with the existing PPC. Finally, the realizability of the spurred prescribed performance is proved via stability proof, and the superiority of the addressed design is tested by compared simulations. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2267 2168-2275 2168-2275 |
| DOI: | 10.1109/TCYB.2023.3255925 |