Fast randomized parallel methods for planar convex hull construction
We present a number of efficient parallel algorithms for constructing 2-dimensional convex hulls on a randomized CRCW PRAM. Specifically, we show how to build the convex hull of n presorted points in the plane in O(1) time using O( n log n) work, with n-exponential probability, or, alternately, in O...
Uloženo v:
| Vydáno v: | Computational geometry : theory and applications Ročník 7; číslo 4; s. 219 - 235 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.03.1997
|
| Témata: | |
| ISSN: | 0925-7721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a number of efficient parallel algorithms for constructing 2-dimensional convex hulls on a randomized CRCW PRAM. Specifically, we show how to build the convex hull of
n presorted points in the plane in O(1) time using O(
n log
n) work, with
n-exponential probability, or, alternately, in
O(
log
∗ n)
time using O(
n) work, with
n-exponential probability. We also show how to find the convex hull of
n unsorted planar points in O(log
n) time using O(
n log
h) work, with
n-exponential probability, where
h is the number of edges in the convex hull (
h is O(
n), but can be as small as O(1)). Our algorithm for unsorted inputs depends on the use of new
in-place procedures, that is, procedures that are defined on a subset of elements in the input and that work without reordering the input. In order to achieve our
n-exponential confidence bounds we use a new parallel technique called
failure sweeping. |
|---|---|
| ISSN: | 0925-7721 |
| DOI: | 10.1016/0925-7721(95)00036-4 |