Fast randomized parallel methods for planar convex hull construction

We present a number of efficient parallel algorithms for constructing 2-dimensional convex hulls on a randomized CRCW PRAM. Specifically, we show how to build the convex hull of n presorted points in the plane in O(1) time using O( n log n) work, with n-exponential probability, or, alternately, in O...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational geometry : theory and applications Ročník 7; číslo 4; s. 219 - 235
Hlavní autoři: Ghouse, Mujtaba R., Goodrich, Michael T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.1997
Témata:
ISSN:0925-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a number of efficient parallel algorithms for constructing 2-dimensional convex hulls on a randomized CRCW PRAM. Specifically, we show how to build the convex hull of n presorted points in the plane in O(1) time using O( n log n) work, with n-exponential probability, or, alternately, in O( log ∗ n) time using O( n) work, with n-exponential probability. We also show how to find the convex hull of n unsorted planar points in O(log n) time using O( n log h) work, with n-exponential probability, where h is the number of edges in the convex hull ( h is O( n), but can be as small as O(1)). Our algorithm for unsorted inputs depends on the use of new in-place procedures, that is, procedures that are defined on a subset of elements in the input and that work without reordering the input. In order to achieve our n-exponential confidence bounds we use a new parallel technique called failure sweeping.
ISSN:0925-7721
DOI:10.1016/0925-7721(95)00036-4