CONVERGENCE OF WEIGHTED AVERAGES OF MARTINGALES IN NONCOMMUTATIVE BANACH FUNCTION SPACES
Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invaria...
Uložené v:
| Vydané v: | Acta mathematica scientia Ročník 32; číslo 2; s. 735 - 744 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.03.2012
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid,Madrid 28049, Spain%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
| Predmet: | |
| ISSN: | 0252-9602, 1572-9087 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σn(x) is given by σn(x) = 1/Wn ∑k=1^n wkxk, n=1, 2, .If in addition, E(Ad) has absolutely continuous norm, then, (an(x))≥1 converges in E(.M) if and only if x = (Xn)n≥1 is uniformly integrable and its limit in measure topology x∞∈ E(M). |
|---|---|
| Bibliografia: | Weighted average; noncommutative martingales; noncommutative BanachfunCtion spaces; uniform integrability Zhang Chao Hou Youliang 1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China 2. Departamento de Matemdticas, Facultad de Ciencias, Universidad Autdnoma de Madrid, Madrid 28049, Spain Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σn(x) is given by σn(x) = 1/Wn ∑k=1^n wkxk, n=1, 2, .If in addition, E(Ad) has absolutely continuous norm, then, (an(x))≥1 converges in E(.M) if and only if x = (Xn)n≥1 is uniformly integrable and its limit in measure topology x∞∈ E(M). 42-1227/O ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0252-9602 1572-9087 |
| DOI: | 10.1016/S0252-9602(12)60053-8 |