New inertial forward–backward algorithm for convex minimization with applications

In this work, we present a new proximal gradient algorithm based on Tseng’s extragradient method and an inertial technique to solve the convex minimization problem in real Hilbert spaces. Using the stepsize rules, the selection of the Lipschitz constant of the gradient of functions is avoided. We th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Demonstratio mathematica Ročník 56; číslo 1; s. 1168 - 1200
Hlavní autori: Kankam, Kunrada, Cholamjiak, Watcharaporn, Cholamjiak, Prasit
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: De Gruyter 15.02.2023
Predmet:
ISSN:2391-4661, 2391-4661
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this work, we present a new proximal gradient algorithm based on Tseng’s extragradient method and an inertial technique to solve the convex minimization problem in real Hilbert spaces. Using the stepsize rules, the selection of the Lipschitz constant of the gradient of functions is avoided. We then prove the weak convergence theorem and present the numerical experiments for image recovery. The comparative results show that the proposed algorithm has better efficiency than other methods.
ISSN:2391-4661
2391-4661
DOI:10.1515/dema-2022-0188