New algorithm for computing the Hermite interpolation polynomial

Let x 0 , x 1 ,⋯ , x n , be a set of n + 1 distinct real numbers (i.e., x i ≠ x j , for i ≠ j ) and y i , k , for i = 0,1,⋯ , n , and k = 0 ,1 ,⋯ , n i , with n i ≥ 1, be given of real numbers, we know that there exists a unique polynomial p N − 1 ( x ) of degree N − 1 where N = ∑ i = 0 n ( n i + 1...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 77; číslo 4; s. 1069 - 1092
Hlavní autoři: Messaoudi, A., Sadaka, R., Sadok, H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2018
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let x 0 , x 1 ,⋯ , x n , be a set of n + 1 distinct real numbers (i.e., x i ≠ x j , for i ≠ j ) and y i , k , for i = 0,1,⋯ , n , and k = 0 ,1 ,⋯ , n i , with n i ≥ 1, be given of real numbers, we know that there exists a unique polynomial p N − 1 ( x ) of degree N − 1 where N = ∑ i = 0 n ( n i + 1 ) , such that p N − 1 ( k ) ( x i ) = y i , k , for i = 0,1,⋯ , n and k = 0,1,⋯ , n i . P N −1 ( x ) is the Hermite interpolation polynomial for the set {( x i , y i , k ), i = 0,1,⋯ , n , k = 0,1,⋯ , n i }. The polynomial p N −1 ( x ) can be computed by using the Lagrange polynomials. This paper presents a new method for computing Hermite interpolation polynomials, for a particular case n i = 1. We will reformulate the Hermite interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Matrix Recursive Polynomial Interpolation Algorithm (MRPIA). Some properties of this algorithm will be studied and some examples will also be given.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-017-0353-6