New algorithm for computing the Hermite interpolation polynomial

Let x 0 , x 1 ,⋯ , x n , be a set of n + 1 distinct real numbers (i.e., x i ≠ x j , for i ≠ j ) and y i , k , for i = 0,1,⋯ , n , and k = 0 ,1 ,⋯ , n i , with n i ≥ 1, be given of real numbers, we know that there exists a unique polynomial p N − 1 ( x ) of degree N − 1 where N = ∑ i = 0 n ( n i + 1...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms Vol. 77; no. 4; pp. 1069 - 1092
Main Authors: Messaoudi, A., Sadaka, R., Sadok, H.
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2018
Springer Nature B.V
Springer Verlag
Subjects:
ISSN:1017-1398, 1572-9265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let x 0 , x 1 ,⋯ , x n , be a set of n + 1 distinct real numbers (i.e., x i ≠ x j , for i ≠ j ) and y i , k , for i = 0,1,⋯ , n , and k = 0 ,1 ,⋯ , n i , with n i ≥ 1, be given of real numbers, we know that there exists a unique polynomial p N − 1 ( x ) of degree N − 1 where N = ∑ i = 0 n ( n i + 1 ) , such that p N − 1 ( k ) ( x i ) = y i , k , for i = 0,1,⋯ , n and k = 0,1,⋯ , n i . P N −1 ( x ) is the Hermite interpolation polynomial for the set {( x i , y i , k ), i = 0,1,⋯ , n , k = 0,1,⋯ , n i }. The polynomial p N −1 ( x ) can be computed by using the Lagrange polynomials. This paper presents a new method for computing Hermite interpolation polynomials, for a particular case n i = 1. We will reformulate the Hermite interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Matrix Recursive Polynomial Interpolation Algorithm (MRPIA). Some properties of this algorithm will be studied and some examples will also be given.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-017-0353-6