New algorithm for computing the Hermite interpolation polynomial
Let x 0 , x 1 ,⋯ , x n , be a set of n + 1 distinct real numbers (i.e., x i ≠ x j , for i ≠ j ) and y i , k , for i = 0,1,⋯ , n , and k = 0 ,1 ,⋯ , n i , with n i ≥ 1, be given of real numbers, we know that there exists a unique polynomial p N − 1 ( x ) of degree N − 1 where N = ∑ i = 0 n ( n i + 1...
Uložené v:
| Vydané v: | Numerical algorithms Ročník 77; číslo 4; s. 1069 - 1092 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.04.2018
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Let
x
0
,
x
1
,⋯ ,
x
n
, be a set of
n
+ 1 distinct real numbers (i.e.,
x
i
≠
x
j
, for
i
≠
j
) and
y
i
,
k
, for
i
= 0,1,⋯ ,
n
, and
k
= 0 ,1 ,⋯ ,
n
i
, with
n
i
≥ 1, be given of real numbers, we know that there exists a unique polynomial
p
N
− 1
(
x
) of degree
N
− 1 where
N
=
∑
i
=
0
n
(
n
i
+
1
)
, such that
p
N
−
1
(
k
)
(
x
i
)
=
y
i
,
k
, for
i
= 0,1,⋯ ,
n
and
k
= 0,1,⋯ ,
n
i
.
P
N
−1
(
x
) is the Hermite interpolation polynomial for the set {(
x
i
,
y
i
,
k
),
i
= 0,1,⋯ ,
n
,
k
= 0,1,⋯ ,
n
i
}. The polynomial
p
N
−1
(
x
) can be computed by using the Lagrange polynomials. This paper presents a new method for computing Hermite interpolation polynomials, for a particular case
n
i
= 1. We will reformulate the Hermite interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Matrix Recursive Polynomial Interpolation Algorithm (MRPIA). Some properties of this algorithm will be studied and some examples will also be given. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-017-0353-6 |