Maximum Likelihood Multi-innovation Stochastic Gradient Estimation for Multivariate Equation-error Systems
This paper focuses on the parameter estimation problems of multivariate equation-error systems. A multi-innovation generalized extended stochastic gradient algorithm is presented as a comparison. Based on the maximum likelihood principle and the coupling identification concept, the multivariate equa...
Uložené v:
| Vydané v: | International journal of control, automation, and systems Ročník 16; číslo 5; s. 2528 - 2537 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Bucheon / Seoul
Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers
01.10.2018
Springer Nature B.V 제어·로봇·시스템학회 |
| Predmet: | |
| ISSN: | 1598-6446, 2005-4092 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper focuses on the parameter estimation problems of multivariate equation-error systems. A multi-innovation generalized extended stochastic gradient algorithm is presented as a comparison. Based on the maximum likelihood principle and the coupling identification concept, the multivariate equation-error system is decomposed into several regressive identification subsystems, each of which has only a parameter vector, and a coupled subsystem maximum likelihood multi-innovation stochastic gradient identification algorithm is developed for estimating the parameter vectors of these subsystems. The simulation results show that the coupled subsystem maximum likelihood multi-innovation stochastic gradient algorithm can generate more accurate parameter estimates and has faster convergence rates compared with the multi-innovation generalized extended stochastic gradient algorithm. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 http://link.springer.com/article/10.1007/s12555-017-0538-8 |
| ISSN: | 1598-6446 2005-4092 |
| DOI: | 10.1007/s12555-017-0538-8 |