Electrical properties based B1+ prediction for electrical properties tomography reconstruction evaluation
Purpose In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the reconstruction method, reconstructed electrical properties (EPs) show large variability in vivo, reducing confidence in the reconstructed values for c...
Saved in:
| Published in: | Magnetic resonance in medicine Vol. 94; no. 3; pp. 1269 - 1283 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.09.2025
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 0740-3194, 1522-2594 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the reconstruction method, reconstructed electrical properties (EPs) show large variability in vivo, reducing confidence in the reconstructed values for clinical application in practice. To overcome this problem we present a method to evaluate the reconstructed EPs using a physics‐based B1+$$ {\mathrm{B}}_1^{+} $$ estimation model.
Methods
A physics‐based method using a finite difference based recurrent relation is used to estimate the B1+$$ {\mathrm{B}}_1^{+} $$ field from a set of given EPs and the boundary of the measured B1+$$ {\mathrm{B}}_1^{+} $$ field. Reconstructed EPs can be evaluated by comparing the estimated B1+$$ {\mathrm{B}}_1^{+} $$ field with the measured B1+$$ {\mathrm{B}}_1^{+} $$ field. The method was first validated in simulations and afterward tested using MRI data from phantoms and in vivo.
Results
The simulation experiments show that the B1+$$ {\mathrm{B}}_1^{+} $$ field can be accurately estimated, within 90 s for a typical brain at 1 mm3 isotropic resolution, when correct EPs are used as input. When incorrect EPs are used as input the estimated B1+$$ {\mathrm{B}}_1^{+} $$ fields shows differences with the measured B1+$$ {\mathrm{B}}_1^{+} $$ fields. These differences directly correspond to the errors in the underlying EPs, enabling detection of errors in the reconstructions. The results obtained in MRI experiments using phantoms and in vivo show the applicability of the method in practice.
Conclusion
With the proposed method, B1+$$ {\mathrm{B}}_1^{+} $$ fields can be accurately estimated from EPs. This approach can be used to evaluate EPT reconstructions and consequently gain more confidence in reconstructed EPs values in vivo. |
|---|---|
| AbstractList | Purpose In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the reconstruction method, reconstructed electrical properties (EPs) show large variability in vivo, reducing confidence in the reconstructed values for clinical application in practice. To overcome this problem we present a method to evaluate the reconstructed EPs using a physics‐based B1+$$ {\mathrm{B}}_1^{+} $$ estimation model. Methods A physics‐based method using a finite difference based recurrent relation is used to estimate the B1+$$ {\mathrm{B}}_1^{+} $$ field from a set of given EPs and the boundary of the measured B1+$$ {\mathrm{B}}_1^{+} $$ field. Reconstructed EPs can be evaluated by comparing the estimated B1+$$ {\mathrm{B}}_1^{+} $$ field with the measured B1+$$ {\mathrm{B}}_1^{+} $$ field. The method was first validated in simulations and afterward tested using MRI data from phantoms and in vivo. Results The simulation experiments show that the B1+$$ {\mathrm{B}}_1^{+} $$ field can be accurately estimated, within 90 s for a typical brain at 1 mm3 isotropic resolution, when correct EPs are used as input. When incorrect EPs are used as input the estimated B1+$$ {\mathrm{B}}_1^{+} $$ fields shows differences with the measured B1+$$ {\mathrm{B}}_1^{+} $$ fields. These differences directly correspond to the errors in the underlying EPs, enabling detection of errors in the reconstructions. The results obtained in MRI experiments using phantoms and in vivo show the applicability of the method in practice. Conclusion With the proposed method, B1+$$ {\mathrm{B}}_1^{+} $$ fields can be accurately estimated from EPs. This approach can be used to evaluate EPT reconstructions and consequently gain more confidence in reconstructed EPs values in vivo. Purpose In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the reconstruction method, reconstructed electrical properties (EPs) show large variability in vivo, reducing confidence in the reconstructed values for clinical application in practice. To overcome this problem we present a method to evaluate the reconstructed EPs using a physics‐based B1+$$ {\mathrm{B}}_1^{+} $$ estimation model. Methods A physics‐based method using a finite difference based recurrent relation is used to estimate the B1+$$ {\mathrm{B}}_1^{+} $$ field from a set of given EPs and the boundary of the measured B1+$$ {\mathrm{B}}_1^{+} $$ field. Reconstructed EPs can be evaluated by comparing the estimated B1+$$ {\mathrm{B}}_1^{+} $$ field with the measured B1+$$ {\mathrm{B}}_1^{+} $$ field. The method was first validated in simulations and afterward tested using MRI data from phantoms and in vivo. Results The simulation experiments show that the B1+$$ {\mathrm{B}}_1^{+} $$ field can be accurately estimated, within 90 s for a typical brain at 1 mm3 isotropic resolution, when correct EPs are used as input. When incorrect EPs are used as input the estimated B1+$$ {\mathrm{B}}_1^{+} $$ fields shows differences with the measured B1+$$ {\mathrm{B}}_1^{+} $$ fields. These differences directly correspond to the errors in the underlying EPs, enabling detection of errors in the reconstructions. The results obtained in MRI experiments using phantoms and in vivo show the applicability of the method in practice. Conclusion With the proposed method, B1+$$ {\mathrm{B}}_1^{+} $$ fields can be accurately estimated from EPs. This approach can be used to evaluate EPT reconstructions and consequently gain more confidence in reconstructed EPs values in vivo. |
| Author | Jung, Kyu‐Jin Berg, Cornelis A. T. Meerbothe, Thierry G. Mandija, Stefano Cui, Chuanjiang Kim, Dong‐Hyun |
| AuthorAffiliation | 1 Department of Radiotherapy, Division of Imaging and Oncology University Medical Center Utrecht Utrecht The Netherlands 2 Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences University Medical Center Utrecht Utrecht The Netherlands 3 Department of Electrical and Electronic Engineering Yonsei University Seoul Republic of Korea |
| AuthorAffiliation_xml | – name: 3 Department of Electrical and Electronic Engineering Yonsei University Seoul Republic of Korea – name: 2 Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences University Medical Center Utrecht Utrecht The Netherlands – name: 1 Department of Radiotherapy, Division of Imaging and Oncology University Medical Center Utrecht Utrecht The Netherlands |
| Author_xml | – sequence: 1 givenname: Thierry G. orcidid: 0009-0009-5736-1038 surname: Meerbothe fullname: Meerbothe, Thierry G. email: t.g.meerbothe@umcutrecht.nl organization: University Medical Center Utrecht – sequence: 2 givenname: Kyu‐Jin orcidid: 0000-0003-2842-1707 surname: Jung fullname: Jung, Kyu‐Jin organization: Yonsei University – sequence: 3 givenname: Chuanjiang surname: Cui fullname: Cui, Chuanjiang organization: Yonsei University – sequence: 4 givenname: Dong‐Hyun orcidid: 0000-0002-6717-7770 surname: Kim fullname: Kim, Dong‐Hyun organization: Yonsei University – sequence: 5 givenname: Cornelis A. T. surname: Berg fullname: Berg, Cornelis A. T. organization: University Medical Center Utrecht – sequence: 6 givenname: Stefano orcidid: 0000-0002-4612-5509 surname: Mandija fullname: Mandija, Stefano organization: University Medical Center Utrecht |
| BookMark | eNp1kctKxTAQhoMoerwsfIOCK5Hq5NLmZCUq3kARRNchzZlopG1q0irn7a1WBEFXM8x8888w_yZZbUOLhOxSOKQA7KiJzSGHgsEKmdGCsZwVSqySGUgBOadKbJDNlF4AQCkp1smGACo5F3RG_HmNto_emjrrYugw9h5TVpmEi-yUHoxFXHjb-9BmLsQM_8T70ISnaLrnZRbRhjb1cZhm8M3Ug_lMt8maM3XCne-4RR4vzh_OrvKbu8vrs5Ob3PICIJcVAwboigpMAQtHK2Ekd9I6xcBZU1KmmAXlwADgXBhaQFkaOgchZWmQb5HjSbcbqgYXFts-mlp30TcmLnUwXv_utP5ZP4U3Tdm4WfL5qLD3rRDD64Cp1y9hiO14tOaMqfHRZalGan-ibAwpRXQ_KyjoT1v0aIv-smVkjyb23de4_B_Ut_e308QHUR2RhQ |
| Cites_doi | 10.1109/JMMCT.2023.3345798 10.1007/s13246‐024‐01484‐z 10.1016/j.phmed.2019.100024 10.1109/TMI.2015.2404944 10.1038/s41598‐019‐45382‐x 10.1088/0266‐5611/31/10/105001 10.1109/TBME.2017.2725140 10.1002/mrm.27414 10.1109/TMI.2011.2168421 10.1002/hbm.26421 10.1002/mrm.30009 10.1002/mrm.27004 10.3390/diagnostics11020176 10.1088/1361‐6560/ab9356 10.1007/s00330‐017‐4942‐5 10.1109/GlobalSIP.2017.8308641 10.1002/mrm.24158 10.1002/nbm.3729 10.1002/mrm.28685 10.1002/mrm.24637 10.1109/TMI.2024.3391651 10.3109/02656739209005023 10.1002/nbm.3522 10.1109/TMI.2015.2466082 10.1016/j.neuroimage.2025.121054 10.1088/0031‐9155/41/11/001 10.1109/TBME.2020.29911399 10.1007/s10548‐020‐00813‐1 10.1002/mrm.26097 10.1002/mrm.22832 10.1002/mrm.30189 10.1109/TEI.1984.298769 10.1007/s00330‐018‐5708‐4 10.1002/mrm.29904 10.1002/jmri.24803 10.1109/TIP.2022.3172220 10.1002/mrm.21120 10.1109/TBME.2019.2907442 10.1002/mrm.30338 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FD FR3 K9. M7Z P64 5PM |
| DOI | 10.1002/mrm.30520 |
| DatabaseName | Wiley Online Library Open Access CrossRef Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley OA url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | MEERBOTHE et al |
| EISSN | 1522-2594 |
| EndPage | 1283 |
| ExternalDocumentID | PMC12202738 10_1002_mrm_30520 MRM30520 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Netherlands Organization for Scientific Research (NWO) funderid: VENI grant no. 18078 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X 8FD FR3 K9. M7Z P64 5PM |
| ID | FETCH-LOGICAL-c3500-7b2020ef5b0a50df1b4a73f7cf920fca61292c09f0a00e84a15066a1804776ae3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001458117100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 |
| IngestDate | Tue Nov 04 02:05:12 EST 2025 Sat Nov 29 14:41:42 EST 2025 Sat Nov 29 07:46:06 EST 2025 Thu Jul 03 09:30:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3500-7b2020ef5b0a50df1b4a73f7cf920fca61292c09f0a00e84a15066a1804776ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4612-5509 0000-0003-2842-1707 0009-0009-5736-1038 0000-0002-6717-7770 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30520 |
| PMID | 40173341 |
| PQID | 3229052669 |
| PQPubID | 1016391 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12202738 proquest_journals_3229052669 crossref_primary_10_1002_mrm_30520 wiley_primary_10_1002_mrm_30520_MRM30520 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2015; 35 2017; 64 2018; 28 2019; 9 2021; 86 2015; 34_(9) 2015; 31 2023; 9 2018; 80 2024 2007; 57 2012; 31 2025; 93 1992; 8 2017; 30 2019; 81 2021; 34 2023; 44 2021; 11 2015; 42 2017; 77 2024; 91 2019; 67 2024; 92 1984; 5 2020; 9 2019 1996; 41 2011; 66 2019; 29 2017 2024; 43 2020; 68 2022; 31 2020; 65 2024; 47 2016; 29 2025; 307 2012; 68 2014; 71 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 41 start-page: 2231 year: 1996 article-title: The dielectric properties of biological tissues: I. Literature survey publication-title: Phys Med Biol – volume: 68 start-page: 236 year: 2020 end-page: 246 article-title: Magnetic‐resonance‐based electrical property mapping using global Maxwell tomography with an 8‐channel head coil at 7 tesla: a simulation study publication-title: IEEE Trans Biomed Eng – volume: 86 start-page: 382 year: 2021 end-page: 392 article-title: High‐frequency electrical properties tomography at 9.4 T as a novel contrast mechanism for brain tumors publication-title: Magn Reson Med – volume: 93 start-page: 1117 year: 2025 end-page: 1131 article-title: MR electrical properties mapping using vision transformers and canny edge detectors publication-title: Magn Reson Med – volume: 64 start-page: 2515 year: 2017 end-page: 2530 article-title: Electrical properties tomography based on B maps in MRI: principles, applications, and challenges publication-title: IEEE Trans Biomed Eng – volume: 28 start-page: 348 year: 2018 end-page: 355 article-title: Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma publication-title: Eur Radiol – volume: 67 start-page: 3 year: 2019 end-page: 15 article-title: Noninvasive estimation of electrical properties from magnetic resonance measurements via global Maxwell tomography and match regularization publication-title: IEEE Trans Biomed Eng – volume: 11 start-page: 176 year: 2021 article-title: Electrical properties tomography: a methodological review publication-title: Diagnostics – year: 2024 – volume: 9 year: 2020 article-title: In‐vivo pilot study at 3 tesla: feasibility of electric properties tomography in a rat model of stroke publication-title: Phys Med – volume: 44 start-page: 4986 year: 2023 end-page: 5001 article-title: Data‐driven electrical conductivity brain imaging using 3 T MRI publication-title: Hum Brain Mapp – start-page: 244 year: 2017 end-page: 248 – volume: 71 start-page: 354 year: 2014 end-page: 363 article-title: Electrical properties tomography in the human brain at 1.5, 3, and 7T: a comparison study publication-title: Magn Reson Med – volume: 65 year: 2020 article-title: Investigating the challenges and generalizability of deep learning brain conductivity mapping publication-title: Phys Med Biol – volume: 81 start-page: 393 year: 2019 end-page: 409 article-title: Mapping electrical properties heterogeneity of tumor using boundary informed electrical properties tomography (BIEPT) at 7T publication-title: Magn Reson Med – volume: 92 start-page: 2271 year: 2024 end-page: 2279 article-title: A reusable 3D printed brain‐like phantom for benchmarking electrical properties tomography reconstructions publication-title: Magn Reson Med – volume: 47 start-page: 1 year: 2024 end-page: 16 article-title: Functional conductivity imaging: quantitative mapping of brain activity publication-title: Phys Eng Sci Med – volume: 42 start-page: 371 year: 2015 end-page: 378 article-title: Initial study on in vivo conductivity mapping of breast cancer using MRI publication-title: J Magn Reson Imaging – volume: 91 start-page: 2374 year: 2024 end-page: 2390 article-title: Phantom evaluation of electrical conductivity mapping by MRI: comparison to vector network analyzer measurements and spatial resolution assessment publication-title: Magn Reson Med – volume: 9 start-page: 49 year: 2023 end-page: 60 article-title: Pifon‐EPT: MR‐based electrical property tomography using physics‐informed Fourier networks publication-title: IEEE J Multiscale Multiphysics Comput Tech – volume: 34 start-page: 56 year: 2021 end-page: 63 article-title: Brain tissue conductivity measurements with MR‐electrical properties tomography: an in vivo study publication-title: Brain Topogr – volume: 91 start-page: 1190 year: 2024 end-page: 1199 article-title: A database for MR‐based electrical properties tomography with in silico brain data—ADEPT publication-title: Magn Reson Med – volume: 31 start-page: 287 year: 2012 end-page: 301 article-title: Reference‐free PRFS MR‐thermometry using near‐harmonic 2‐D reconstruction of the background phase publication-title: IEEE Trans Med Imaging – volume: 34_(9) start-page: 1788 year: 2015 end-page: 1796 article-title: CSI‐EPT: a contrast source inversion approach for improved MRI‐based electric properties tomography publication-title: IEEE Trans Med Imaging – volume: 8 start-page: 755 year: 1992 end-page: 760 article-title: Dielectric properties of human glioma and surrounding tissue publication-title: Int J Hyperthermia – volume: 29 start-page: 1778 year: 2019 end-page: 1786 article-title: Diagnostic value of electric properties tomography (EPT) for differentiating benign from malignant breast lesions: comparison with standard dynamic contrast‐enhanced MRI publication-title: Eur Radiol – volume: 66 start-page: 456 year: 2011 end-page: 466 article-title: Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography publication-title: Magn Reson Med – volume: 9 start-page: 8895 year: 2019 article-title: Opening a new window on MR‐based electrical properties tomography with deep learning publication-title: Sci Rep – volume: 77 start-page: 137 year: 2017 end-page: 150 article-title: Gradient‐based electrical conductivity imaging using MR phase publication-title: Magn Reson Med – volume: 57 start-page: 192 year: 2007 end-page: 200 article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field publication-title: Magn Reson Med – volume: 307 year: 2025 article-title: A joint three‐plane physics‐constrained deep learning based polynomial fitting approach for MR electrical properties tomography publication-title: Neuroimage – volume: 5 start-page: 453 year: 1984 end-page: 474 – volume: 43 start-page: 3263 year: 2024 end-page: 3278 article-title: Magnetic resonance electrical properties tomography based on modified physics‐informed neural network and multiconstraints publication-title: IEEE Trans Med Imaging – volume: 35 start-page: 244 year: 2015 end-page: 256 article-title: An inverse problems approach to MR‐EPT image reconstruction publication-title: IEEE Trans Med Imaging – volume: 30 year: 2017 article-title: Electric properties tomography: biochemical, physical and technical background, evaluation and clinical applications publication-title: NMR Biomed – volume: 31 year: 2015 article-title: Magnetic resonance‐based reconstruction method of conductivity and permittivity distributions at the Larmor frequency publication-title: Inverse Probl – volume: 68 start-page: 1517 year: 2012 end-page: 1526 article-title: DREAM—a novel approach for robust, ultrafast, multislice B1 mapping publication-title: Magn Reson Med – year: 2019 – volume: 80 start-page: 90 year: 2018 end-page: 100 article-title: Error analysis of helmholtz‐based MR‐electrical properties tomography publication-title: Magn Reson Med – volume: 31 start-page: 3463 year: 2022 end-page: 3478 article-title: Physics‐coupled neural network magnetic resonance electrical property tomography (mrept) for conductivity reconstruction publication-title: IEEE Trans Image Process – volume: 29 start-page: 744 year: 2016 end-page: 750 article-title: Quantitative analysis of the reconstruction errors of the currently popular algorithm of magnetic resonance electrical property tomography at the interfaces of adjacent tissues publication-title: NMR in Biomed – ident: e_1_2_10_28_1 doi: 10.1109/JMMCT.2023.3345798 – ident: e_1_2_10_44_1 – ident: e_1_2_10_16_1 doi: 10.1007/s13246‐024‐01484‐z – ident: e_1_2_10_13_1 – ident: e_1_2_10_17_1 doi: 10.1016/j.phmed.2019.100024 – ident: e_1_2_10_48_1 doi: 10.1109/TMI.2015.2404944 – ident: e_1_2_10_23_1 doi: 10.1038/s41598‐019‐45382‐x – ident: e_1_2_10_46_1 doi: 10.1088/0266‐5611/31/10/105001 – ident: e_1_2_10_32_1 doi: 10.1109/TBME.2017.2725140 – ident: e_1_2_10_33_1 doi: 10.1002/mrm.27414 – ident: e_1_2_10_34_1 doi: 10.1109/TMI.2011.2168421 – ident: e_1_2_10_25_1 doi: 10.1002/hbm.26421 – ident: e_1_2_10_43_1 doi: 10.1002/mrm.30009 – ident: e_1_2_10_20_1 doi: 10.1002/mrm.27004 – ident: e_1_2_10_18_1 doi: 10.3390/diagnostics11020176 – ident: e_1_2_10_24_1 doi: 10.1088/1361‐6560/ab9356 – ident: e_1_2_10_8_1 doi: 10.1007/s00330‐017‐4942‐5 – ident: e_1_2_10_35_1 doi: 10.1109/GlobalSIP.2017.8308641 – ident: e_1_2_10_39_1 doi: 10.1002/mrm.24158 – ident: e_1_2_10_4_1 doi: 10.1002/nbm.3729 – ident: e_1_2_10_12_1 doi: 10.1002/mrm.28685 – ident: e_1_2_10_37_1 doi: 10.1002/mrm.24637 – ident: e_1_2_10_29_1 doi: 10.1109/TMI.2024.3391651 – ident: e_1_2_10_5_1 doi: 10.3109/02656739209005023 – ident: e_1_2_10_19_1 doi: 10.1002/nbm.3522 – ident: e_1_2_10_47_1 doi: 10.1109/TMI.2015.2466082 – ident: e_1_2_10_31_1 doi: 10.1016/j.neuroimage.2025.121054 – ident: e_1_2_10_3_1 doi: 10.1088/0031‐9155/41/11/001 – ident: e_1_2_10_42_1 doi: 10.1109/TBME.2020.29911399 – ident: e_1_2_10_21_1 doi: 10.1007/s10548‐020‐00813‐1 – ident: e_1_2_10_36_1 doi: 10.1002/mrm.26097 – ident: e_1_2_10_15_1 – ident: e_1_2_10_14_1 – ident: e_1_2_10_41_1 doi: 10.1002/mrm.22832 – ident: e_1_2_10_38_1 doi: 10.1002/mrm.30189 – ident: e_1_2_10_7_1 – ident: e_1_2_10_2_1 doi: 10.1109/TEI.1984.298769 – ident: e_1_2_10_6_1 – ident: e_1_2_10_9_1 doi: 10.1007/s00330‐018‐5708‐4 – ident: e_1_2_10_27_1 doi: 10.1002/mrm.29904 – ident: e_1_2_10_10_1 doi: 10.1002/jmri.24803 – ident: e_1_2_10_22_1 – ident: e_1_2_10_45_1 – ident: e_1_2_10_30_1 doi: 10.1109/TIP.2022.3172220 – ident: e_1_2_10_40_1 doi: 10.1002/mrm.21120 – ident: e_1_2_10_49_1 doi: 10.1109/TBME.2019.2907442 – ident: e_1_2_10_11_1 – ident: e_1_2_10_26_1 doi: 10.1002/mrm.30338 |
| SSID | ssj0009974 |
| Score | 2.4901674 |
| Snippet | Purpose
In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the... Purpose In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the... |
| SourceID | pubmedcentral proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1269 |
| SubjectTerms | Computer Processing and Modeling conductivity confidence Electrical properties electrical properties tomography Electrical resistivity Error detection finite differences Image reconstruction In vivo methods and tests Magnetic resonance imaging Tomography |
| Title | Electrical properties based B1+ prediction for electrical properties tomography reconstruction evaluation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30520 https://www.proquest.com/docview/3229052669 https://pubmed.ncbi.nlm.nih.gov/PMC12202738 |
| Volume | 94 |
| WOSCitedRecordID | wos001458117100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPc17wxctUnM4RxAdB6tKkbRp88rKh4IYMp76VpGtxD7uwDT-_OWm3OVEQfOslaUtO0vM_6ekvAGdhEGgVpsqRuhubAMXVjvJ85TDBEuOwu4FvkUIvj6LVCt_e5FMBrmb_wmR8iPmEG44M-77GAa70pLaAhvbH_UuOWRwrsOq6XGCXZt7TgrgrMwSz8PBFI70ZVoiy2rzqsjNaKMzv-ZFfdat1PI3tfz3yDmzlepNcZx1kFwrJoAQbzfyLegnWbQpoPNmDXt2uiINGIyOcoh8ja5Wgm-uSG_fCHMRaaEhilC5Jfiw-HfZzCDaxsfacT0sWXPF96DTqz7f3Tr4QgxNzn1JHaGZUZZL6miqfdlNXe0rwVMSpZDSNlVFJksVUplRRmoSeQmxhoNyQekIEKuEHUBwMB8khEKZTEzAhZDBAmBpXPDYxCpeh8rXrKV6G05lFolHG24gysjKLTPNFtvnKUJnZKsqH3CTiSK73jd6QZQiX7De_EKK0l88Meu8Wqe0yZsE-ZTi3Bvz93lGz3bQbR38vegybDJcNtqlpFSialk9OYC3-mPYm46rttlVYvWs3Oo9m7_Wh9Ql8_PR_ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPc_P24mUqTqcG8UGQujTpLeCLl42J25Cxyd5KesM97MI2_PzmpN3mREHwrbRJW_JPcs5JT38BuPIcJ5BeIg0RRKEKUMzAkJYtDeayWBnsyLE1Uuit4bZaXq8nXnNwN_8XJuVDLBbccGTo-RoHOC5IV5bU0MFkcMsxjWMNCpbqRnYeCk_tWrexhO6KlMLsWjjXCGtOFqKssqi8ao-WTub3FMmvrqu2PbXd_731HuxkPie5TzvJPuTiYRE2m9lX9SJs6DTQcHoA_areFQeFI2Ncpp8gb5WgqYvIg3mjTmItFJMob5fEPxafjQYZCJvoeHvBqCVLtvghdGvVzmPdyDZjMEJuU2q4AVOeZZzYAZU2jRIzsKTLEzdMBKNJKJWnJFhIRUIlpbFnSUQXOtL0qOW6joz5EeSHo2F8DIQFiQqaEDToIFCNSx6qOIULT9qBaUlegsu5JP44ZW74KV2Z-ar5fN18JSjPxfKzYTf1OdLrbeVziBJ4KwIuboQ47dUrw_67xmqbjGm4TwmutYK_P9tvtpv64OTvRS9gq95pNvzGc-vlFLYZbiOsU9XKkFcqxGewHn7M-tPJedaLPwH7L_dN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOi_44l2c1yA-CFKXJukl4Iu3oejGEBXfStomuIfNsQ0_vzlptzlREHwrbdKWnCTnf9LTXwCO4zBMVWyUJ9M8swGKn3pKBMpjEdPWYedh4JBCLw9Rsxm_vsrWDJyP_oUp-BDjBTccGW6-xgGue7mpTaihnX7njGMaxyzMicDOsch1Fq0JclcWDOZI4EwjxYgrRFltXHXaG00k5vcEya_C1Xme-sr_3nkVlkvFSS6KLrIGM7q7DouN8pv6Oiy4JNBssAHtG7cnDpqN9HCRvo-0VYKOLieX_qk9ibXQlMRqXaJ_LD5875QYbOKi7TGhlkzI4pvwXL95urr1yq0YvIwHlHpRyqyu1CZIqQpobvxUqIibKDOSUZMpq5Mky6g0VFGqY6EQXBgqP6YiikKl-RZUuu9dvQ2EpcaGTIgZDBGnxhXPbJTCZayC1BeKV-FoZJKkVxA3koKtzBLbfIlrvirsjYyVlINukHBk1wdWccgqxFMGHN8IYdrTV7rtNwfV9hlzaJ8qnDgL_v7spPHYcAc7fy96CIut63rycNe834UlhnsIuzy1PahYI-h9mM8-hu1B_8B14U81jvU2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+properties+based+B1%2B+prediction+for+electrical+properties+tomography+reconstruction+evaluation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Meerbothe%2C+Thierry+G.&rft.au=Jung%2C+Kyu%E2%80%90Jin&rft.au=Cui%2C+Chuanjiang&rft.au=Kim%2C+Dong%E2%80%90Hyun&rft.date=2025-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=94&rft.issue=3&rft.spage=1269&rft.epage=1283&rft_id=info:doi/10.1002%2Fmrm.30520&rft.externalDBID=10.1002%252Fmrm.30520&rft.externalDocID=MRM30520 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |