Mixed-integer quadratic programming is in NP

Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 162; H. 1-2; S. 225 - 240
Hauptverfasser: Pia, Alberto Del, Dey, Santanu S., Molinaro, Marco
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2017
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing that if the decision version of mixed-integer quadratic programming is feasible, then there exists a solution of polynomial size. This result generalizes and unifies classical results that quadratic programming is in NP (Vavasis in Inf Process Lett 36(2):73–77 [ 17 ]) and integer linear programming is in NP (Borosh and Treybig in Proc Am Math Soc 55:299–304 [ 1 ], von zur Gathen and Sieveking in Proc Am Math Soc 72:155–158 [ 18 ], Kannan and Monma in Lecture Notes in Economics and Mathematical Systems, vol. 157, pp. 161–172. Springer [ 9 ], Papadimitriou in J Assoc Comput Mach 28:765–768 [ 15 ]).
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-016-1036-0