The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for tm waves propagating in a layer with arbitrary nonlinearity

The problem of plane monochromatic TM waves propagating in a layer with an arbitrary nonlinearity is considered. The layer is placed between two semi-infinite media. Surface waves propagating along the material interface are sought. The physical problem is reduced to solving a nonlinear eigenvalue t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational mathematics and mathematical physics Ročník 53; číslo 1; s. 78 - 92
Hlavní autori: Valovik, D. V., Zarembo, E. V.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht SP MAIK Nauka/Interperiodica 01.01.2013
Springer Nature B.V
Predmet:
ISSN:0965-5425, 1555-6662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The problem of plane monochromatic TM waves propagating in a layer with an arbitrary nonlinearity is considered. The layer is placed between two semi-infinite media. Surface waves propagating along the material interface are sought. The physical problem is reduced to solving a nonlinear eigenvalue transmission problem for a system of two ordinary differential equations. A theorem on the existence and localization of at least one eigenvalue is proven. On the basis of this theorem, a method for finding approximate eigenvalues of the considered problem is proposed. Numerical results for Kerr and saturation nonlinearities are presented as examples.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542513010089