On the Problem of Minimizing a Difference of Polyhedral Convex Functions Under Linear Constraints

This paper is concerned with two d.p. (difference of polyhedral convex functions) programming models, unconstrained and linearly constrained, in a finite-dimensional setting. We obtain exact formulae for the Fréchet and Mordukhovich subdifferentials of a d.p. function. We establish optimality condit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 171; číslo 2; s. 617 - 642
Hlavní autoři: Van Hang, Nguyen Thi, Yen, Nguyen Dong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2016
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper is concerned with two d.p. (difference of polyhedral convex functions) programming models, unconstrained and linearly constrained, in a finite-dimensional setting. We obtain exact formulae for the Fréchet and Mordukhovich subdifferentials of a d.p. function. We establish optimality conditions via subdifferentials in the sense of convex analysis, of Fréchet and of Mordukhovich, and describe their relationships. Existence and computation of descent and steepest descent directions for both the models are also studied.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-015-0769-x