On the Problem of Minimizing a Difference of Polyhedral Convex Functions Under Linear Constraints
This paper is concerned with two d.p. (difference of polyhedral convex functions) programming models, unconstrained and linearly constrained, in a finite-dimensional setting. We obtain exact formulae for the Fréchet and Mordukhovich subdifferentials of a d.p. function. We establish optimality condit...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 171; číslo 2; s. 617 - 642 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2016
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper is concerned with two d.p. (difference of polyhedral convex functions) programming models, unconstrained and linearly constrained, in a finite-dimensional setting. We obtain exact formulae for the Fréchet and Mordukhovich subdifferentials of a d.p. function. We establish optimality conditions via subdifferentials in the sense of convex analysis, of Fréchet and of Mordukhovich, and describe their relationships. Existence and computation of descent and steepest descent directions for both the models are also studied. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-015-0769-x |