A recursive formula for the Kaplan–Meier estimator with mean constraints and its application to empirical likelihood

The Kaplan–Meier estimator is very popular in analysis of survival data. However, it is not easy to compute the ‘constrained’ Kaplan–Meier. Current computational method uses expectation-maximization algorithm to achieve this, but can be slow at many situations. In this note we give a recursive compu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational statistics Ročník 30; číslo 4; s. 1097 - 1109
Hlavní autoři: Zhou, Mai, Yang, Yifan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2015
Springer Nature B.V
Témata:
ISSN:0943-4062, 1613-9658
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Kaplan–Meier estimator is very popular in analysis of survival data. However, it is not easy to compute the ‘constrained’ Kaplan–Meier. Current computational method uses expectation-maximization algorithm to achieve this, but can be slow at many situations. In this note we give a recursive computational algorithm for the ‘constrained’ Kaplan–Meier estimator. The constraint is assumed given in linear estimating equations or mean functions. We also illustrate how this leads to the empirical likelihood ratio test with right censored data. Speed comparison to the EM based algorithm favours the current procedure.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0943-4062
1613-9658
DOI:10.1007/s00180-015-0567-9