A recursive formula for the Kaplan–Meier estimator with mean constraints and its application to empirical likelihood

The Kaplan–Meier estimator is very popular in analysis of survival data. However, it is not easy to compute the ‘constrained’ Kaplan–Meier. Current computational method uses expectation-maximization algorithm to achieve this, but can be slow at many situations. In this note we give a recursive compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics Jg. 30; H. 4; S. 1097 - 1109
Hauptverfasser: Zhou, Mai, Yang, Yifan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2015
Springer Nature B.V
Schlagworte:
ISSN:0943-4062, 1613-9658
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Kaplan–Meier estimator is very popular in analysis of survival data. However, it is not easy to compute the ‘constrained’ Kaplan–Meier. Current computational method uses expectation-maximization algorithm to achieve this, but can be slow at many situations. In this note we give a recursive computational algorithm for the ‘constrained’ Kaplan–Meier estimator. The constraint is assumed given in linear estimating equations or mean functions. We also illustrate how this leads to the empirical likelihood ratio test with right censored data. Speed comparison to the EM based algorithm favours the current procedure.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0943-4062
1613-9658
DOI:10.1007/s00180-015-0567-9