An industrially relevant formulation of a distributed model predictive control algorithm based on minimal process information

•A novel formulation for DMPC architecture with input–output model.•Industrial considerations given through complexity simplifications in the design.•Robustness to modelling errors caused by main dynamics approximations. Plant-wide control implies advanced supervisory algorithms to maintain desired...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of process control Jg. 68; S. 240 - 253
Hauptverfasser: Maxim, Anca, Copot, Dana, De Keyser, Robin, Ionescu, Clara M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.08.2018
Schlagworte:
ISSN:0959-1524, 1873-2771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel formulation for DMPC architecture with input–output model.•Industrial considerations given through complexity simplifications in the design.•Robustness to modelling errors caused by main dynamics approximations. Plant-wide control implies advanced supervisory algorithms to maintain desired performance in the involved coupled sub-systems. The dynamical interactions among these sub-systems can vary with the operating point, material properties and disturbances present in the process. Recirculating loops introduce additional phenomena in the dynamic response, further challenging the control tasks. Complex process dynamics may be linear parameter varying (LPV) and may be difficult, if not impossible, to identify properly. In this context, maintaining global performance is a challenge one must undertake with limited information at hand. This paper investigates the trade-off between the complexity of the implementation and achieved performance, using supervisory predictive control with limited information shared, applied on a test-bench representative for process control industry. The robustness of the proposed algorithms is tested against a nominal scenario in which the prediction model is fully identified, with complete information exchange. Experimental tests are performed on a test-bench process characterized by strong interactions, and the results illustrate the usefulness of this work.
AbstractList •A novel formulation for DMPC architecture with input–output model.•Industrial considerations given through complexity simplifications in the design.•Robustness to modelling errors caused by main dynamics approximations. Plant-wide control implies advanced supervisory algorithms to maintain desired performance in the involved coupled sub-systems. The dynamical interactions among these sub-systems can vary with the operating point, material properties and disturbances present in the process. Recirculating loops introduce additional phenomena in the dynamic response, further challenging the control tasks. Complex process dynamics may be linear parameter varying (LPV) and may be difficult, if not impossible, to identify properly. In this context, maintaining global performance is a challenge one must undertake with limited information at hand. This paper investigates the trade-off between the complexity of the implementation and achieved performance, using supervisory predictive control with limited information shared, applied on a test-bench representative for process control industry. The robustness of the proposed algorithms is tested against a nominal scenario in which the prediction model is fully identified, with complete information exchange. Experimental tests are performed on a test-bench process characterized by strong interactions, and the results illustrate the usefulness of this work.
Author Ionescu, Clara M.
Maxim, Anca
Copot, Dana
De Keyser, Robin
Author_xml – sequence: 1
  givenname: Anca
  surname: Maxim
  fullname: Maxim, Anca
  email: anca.maxim@ac.tuiasi.ro
  organization: Ghent University, Department of Electrical Energy, Metals, Mechanical Constructions and Systems, DySC Research group on Dynamical Systems and Control, Technologiepark 914, Ghent B9052, Belgium
– sequence: 2
  givenname: Dana
  surname: Copot
  fullname: Copot, Dana
  organization: Ghent University, Department of Electrical Energy, Metals, Mechanical Constructions and Systems, DySC Research group on Dynamical Systems and Control, Technologiepark 914, Ghent B9052, Belgium
– sequence: 3
  givenname: Robin
  surname: De Keyser
  fullname: De Keyser, Robin
  organization: Ghent University, Department of Electrical Energy, Metals, Mechanical Constructions and Systems, DySC Research group on Dynamical Systems and Control, Technologiepark 914, Ghent B9052, Belgium
– sequence: 4
  givenname: Clara M.
  surname: Ionescu
  fullname: Ionescu, Clara M.
  organization: Ghent University, Department of Electrical Energy, Metals, Mechanical Constructions and Systems, DySC Research group on Dynamical Systems and Control, Technologiepark 914, Ghent B9052, Belgium
BookMark eNqFkMtOwzAQRS1UJNrCLyD_QMLYSfOQWIAQLwmJDawtx56AK8eubLdSF_w7SYENm65mc8-dmbMgM-cdEnLJIGfAqqt1vt4Er7xLOQfW5FDlAOUJmbOmLjJe12xG5tCu2oyteHlGFjGuAaCoeTUnX7eOGqe3MQUjrd3TgBZ30iXa-zBsrUzGO-p7Kqk2U6jbJtR08Bot3QTURiWzQzqtD95SaT98MOlzoJ2MY3CEB-PMIKe0VxjjuG6qPhSfk9Ne2ogXv3NJ3h_u3-6espfXx-e725dMFWWbMmyB1UppiRWirpuu0xyasit7DhJa3umuKjRHrrlmKIuSMSxaWDVcNn3TYbEk1z-9KvgYA_ZCmXS4IAVprGAgJpViLf5UikmlgEqMKke8-odvwvhS2B8Hb35AHJ_bGQwiKoNOjdoCqiS0N8cqvgGCD5pd
CitedBy_id crossref_primary_10_1016_j_arcontrol_2025_100996
crossref_primary_10_1016_j_applthermaleng_2021_116993
crossref_primary_10_3390_pr7070442
crossref_primary_10_3390_pr7110778
crossref_primary_10_1080_00207543_2023_2260495
crossref_primary_10_1016_j_ifacol_2021_04_170
crossref_primary_10_1080_00207721_2023_2301043
crossref_primary_10_1088_1757_899X_560_1_012016
crossref_primary_10_1002_jnm_3228
crossref_primary_10_1016_j_jprocont_2019_06_005
crossref_primary_10_1016_j_mechatronics_2019_102275
crossref_primary_10_1109_ACCESS_2020_3007924
crossref_primary_10_1016_j_ins_2023_119092
crossref_primary_10_3390_en15030734
crossref_primary_10_3390_pr6120265
crossref_primary_10_1016_j_ifacol_2021_10_228
crossref_primary_10_1016_j_ifacol_2021_10_316
crossref_primary_10_3390_a12050102
crossref_primary_10_3390_act12070281
crossref_primary_10_1002_asjc_2999
Cites_doi 10.1016/j.automatica.2016.02.009
10.1016/j.compchemeng.2012.05.011
10.1016/j.conengprac.2013.10.003
10.1016/j.sysconle.2010.06.005
10.1080/00207179.2012.679972
10.1002/oca.2141
10.1007/s11760-012-0322-4
10.1002/rnc.3640
10.1080/00207170802187247
10.1016/j.jprocont.2009.02.003
10.1109/MCS.2016.2621479
10.1007/s10877-013-9535-5
10.1016/0005-1098(81)90092-3
10.1016/j.automatica.2012.03.020
10.1016/j.compchemeng.2016.03.001
10.1016/j.solener.2008.11.005
10.1109/MCS.2016.2621438
10.1016/0005-1098(88)90024-6
10.1016/j.jprocont.2006.10.010
10.1016/j.jprocont.2006.10.011
10.1016/j.jprocont.2015.11.002
10.1109/TII.2016.2532118
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jprocont.2018.06.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2771
EndPage 253
ExternalDocumentID 10_1016_j_jprocont_2018_06_004
S0959152418301185
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
LY7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
UNMZH
WUQ
XFK
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c349t-e9017ccdae6eed78bbd2084b4f20a092bdb63d2e2d2d1ea3411e390582a8f8be3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442706100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-1524
IngestDate Tue Nov 18 22:30:22 EST 2025
Sat Nov 29 07:06:30 EST 2025
Fri Feb 23 02:49:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Model predictive control
Interacting sub-systems
Robustness
Model uncertainties
Information exchange
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-e9017ccdae6eed78bbd2084b4f20a092bdb63d2e2d2d1ea3411e390582a8f8be3
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_jprocont_2018_06_004
crossref_primary_10_1016_j_jprocont_2018_06_004
elsevier_sciencedirect_doi_10_1016_j_jprocont_2018_06_004
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of process control
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References R. De Keyser, J. Donald III, Z. Lu, H. De Waard, MPC in semiconductor processing, MPC in thermal processing, USA Patents (08/597-438, 6207936,6373033).
De Keyser, Van de Velde, Dumortier (bib0100) 1988; 24
Hermans, Jokić, Lazar, Alessio, van den Bosch, Hiskens, Bemporad (bib0045) 2012; 85
Soltesz, Mercader, Baños (bib0155) 2016; 27
Bauer, Horch, Xie, Jelali, Thornhill (bib0005) 2016; 38
Ionescu, Nascu, Ltdc:De Keyser:rtdc (bib0115) 2014; 28
Pop, Ionescu, De Keyser, Dulf (bib0165) 2012; 6
Quijano, Ocampo-Martinez, Barreiro-Gomez, Obando, Pantoja, Mojica-Nava (bib0080) 2017; 37
De Keyser, Ionescu (bib0140) 2003
Wang (bib0145) 2009
Dutta, Hartley, Maciejowski, De Keyser (bib0175) 2014
Camacho, Bordons (bib0150) 1999
Maciejowski (bib0170) 2000
Samad (bib0010) 2017; 37
Dutta, Depraetere, Ionescu, Pinte, Swevers, De Keyser (bib0110) 2014; 22
Davison, Aghdam (bib0020) 2010
Muros, Algaba, Maestre, Camacho (bib0075) 2016
Bodenburg, Lunze (bib0070) 2016
Dutta, Ionescu, De Keyser (bib0135) 2015; 36
Samad, McLaughlin, Lu (bib0015) 2007; 17
Farina, Scattolini (bib0055) 2012; 48
Folea, Mois, Muresan, Miclea, De Keyser, Cirstea (bib0130) 2016; 12
Kalsi, Lian, Żak (bib0025) 2009; 82
De Keyser, Van Cauwenberghe (bib0095) 1981; 17
De Keyser (bib0105) 2003
Scattolini (bib0040) 2009; 19
Ionescu, Muresan, Copot, De Keyser (bib0160) 2016
Maxim, Copot, De Keyser, Ionescu (bib0185) 2017
Christofides, Scattolini, Munoz de la Peña, Liu (bib0035) 2013; 51
Farina, Ferrari, Manenti, Pizzi (bib0065) 2016; 89
Alessio, Bemporad (bib0030) 2007
Conte, Jones, Morari, Zeilinger (bib0050) 2016; 69
Engell (bib0180) 2007; 17
Maestre, Negenborn (bib0085) 2014
Negenborn, Maestre (bib0090) 2014; 34
Ltdc:Gá:rtdclvez-Carrillo, Ltdc:De Keyser:rtdc, Ionescu (bib0120) 2009; 83
Stewart, Venkat, Rawlings, Wright, Pannocchia (bib0060) 2010; 59
Maestre (10.1016/j.jprocont.2018.06.004_bib0085) 2014
10.1016/j.jprocont.2018.06.004_bib0125
Ionescu (10.1016/j.jprocont.2018.06.004_bib0160) 2016
Maxim (10.1016/j.jprocont.2018.06.004_bib0185) 2017
Alessio (10.1016/j.jprocont.2018.06.004_bib0030) 2007
Farina (10.1016/j.jprocont.2018.06.004_bib0065) 2016; 89
Samad (10.1016/j.jprocont.2018.06.004_bib0010) 2017; 37
Muros (10.1016/j.jprocont.2018.06.004_bib0075) 2016
De Keyser (10.1016/j.jprocont.2018.06.004_bib0095) 1981; 17
Folea (10.1016/j.jprocont.2018.06.004_bib0130) 2016; 12
Davison (10.1016/j.jprocont.2018.06.004_bib0020) 2010
Dutta (10.1016/j.jprocont.2018.06.004_bib0175) 2014
Stewart (10.1016/j.jprocont.2018.06.004_bib0060) 2010; 59
Dutta (10.1016/j.jprocont.2018.06.004_bib0110) 2014; 22
De Keyser (10.1016/j.jprocont.2018.06.004_bib0140) 2003
Hermans (10.1016/j.jprocont.2018.06.004_bib0045) 2012; 85
Bodenburg (10.1016/j.jprocont.2018.06.004_bib0070) 2016
Conte (10.1016/j.jprocont.2018.06.004_bib0050) 2016; 69
Maciejowski (10.1016/j.jprocont.2018.06.004_bib0170) 2000
Bauer (10.1016/j.jprocont.2018.06.004_bib0005) 2016; 38
Negenborn (10.1016/j.jprocont.2018.06.004_bib0090) 2014; 34
De Keyser (10.1016/j.jprocont.2018.06.004_bib0105) 2003
Camacho (10.1016/j.jprocont.2018.06.004_bib0150) 1999
Wang (10.1016/j.jprocont.2018.06.004_bib0145) 2009
Ionescu (10.1016/j.jprocont.2018.06.004_bib0115) 2014; 28
Pop (10.1016/j.jprocont.2018.06.004_bib0165) 2012; 6
Christofides (10.1016/j.jprocont.2018.06.004_bib0035) 2013; 51
Kalsi (10.1016/j.jprocont.2018.06.004_bib0025) 2009; 82
Soltesz (10.1016/j.jprocont.2018.06.004_bib0155) 2016; 27
Engell (10.1016/j.jprocont.2018.06.004_bib0180) 2007; 17
Samad (10.1016/j.jprocont.2018.06.004_bib0015) 2007; 17
Quijano (10.1016/j.jprocont.2018.06.004_bib0080) 2017; 37
De Keyser (10.1016/j.jprocont.2018.06.004_bib0100) 1988; 24
Dutta (10.1016/j.jprocont.2018.06.004_bib0135) 2015; 36
Farina (10.1016/j.jprocont.2018.06.004_bib0055) 2012; 48
Scattolini (10.1016/j.jprocont.2018.06.004_bib0040) 2009; 19
Ltdc:Gá:rtdclvez-Carrillo (10.1016/j.jprocont.2018.06.004_bib0120) 2009; 83
References_xml – volume: 28
  start-page: 537
  year: 2014
  end-page: 546
  ident: bib0115
  article-title: Lessons learned from closed loops in engineering: towards a multivariable approach regulating depth of anaesthesia
  publication-title: J. Clin. Monit. Comput.
– volume: 17
  start-page: 167
  year: 1981
  end-page: 174
  ident: bib0095
  article-title: A self-tuning multistep predictor application
  publication-title: Automatica
– volume: 85
  start-page: 1162
  year: 2012
  end-page: 1177
  ident: bib0045
  article-title: Assessment of non-centralised model predictive control techniques for electrical power networks
  publication-title: Int. J. Control
– reference: R. De Keyser, J. Donald III, Z. Lu, H. De Waard, MPC in semiconductor processing, MPC in thermal processing, USA Patents (08/597-438, 6207936,6373033).
– volume: 89
  start-page: 192
  year: 2016
  end-page: 203
  ident: bib0065
  article-title: Assessment and comparison of distributed model predictive control schemes: application to a natural gas refrigeration plant
  publication-title: Comput. Chem. Eng.
– year: 1999
  ident: bib0150
  article-title: Model Predictive Control
– volume: 48
  start-page: 1088
  year: 2012
  end-page: 1096
  ident: bib0055
  article-title: Distributed predictive control: a non-cooperative algorithm with neighbor-to-neighbor communication for linear systems
  publication-title: Automatica
– year: 2000
  ident: bib0170
  article-title: Predictive Control with Constraints
– volume: 69
  start-page: 117
  year: 2016
  end-page: 125
  ident: bib0050
  article-title: Distributed synthesis and stability of cooperative distributed model predictive control for linear systems
  publication-title: Automatica
– volume: 37
  start-page: 70
  year: 2017
  end-page: 97
  ident: bib0080
  article-title: The role of population games and evolutionary dynamics in distributed control systems
  publication-title: IEEE Control Syst.
– volume: 6
  start-page: 453
  year: 2012
  end-page: 461
  ident: bib0165
  article-title: Robustness evaluation of fractional order control for varying time delay processes
  publication-title: Signal Image Video Process.
– volume: 83
  start-page: 743
  year: 2009
  end-page: 752
  ident: bib0120
  article-title: Nonlinear predictive control with dead-time compensator: application to a solar power plant
  publication-title: Solar Energy
– volume: 59
  start-page: 460
  year: 2010
  end-page: 469
  ident: bib0060
  article-title: Cooperative distributed model predictive control
  publication-title: Syst. Control Lett.
– volume: 37
  start-page: 17
  year: 2017
  end-page: 18
  ident: bib0010
  article-title: A survey on industry impact and challenges thereof [technical activities]
  publication-title: IEEE Control Syst.
– year: 2009
  ident: bib0145
  article-title: Control System Design and Implementation Using MATLAB
– volume: 38
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0005
  article-title: The current state of control loop performance monitoring – a survey of application in industry
  publication-title: J. Process Control
– volume: 22
  start-page: 114
  year: 2014
  end-page: 124
  ident: bib0110
  article-title: Comparison of two-level NMPC and ILC strategies for wet-clutch control
  publication-title: Control Eng. Pract.
– year: 2014
  ident: bib0085
  article-title: Distributed Model Predictive Control Made Easy
– year: 2003
  ident: bib0140
  article-title: The disturbance model in model based predictive control
  publication-title: Proc. of the IEEE Conference on Control Applications (CCA 2003)
– volume: 82
  start-page: 541
  year: 2009
  end-page: 554
  ident: bib0025
  article-title: On decentralised control of non-linear interconnected systems
  publication-title: Int. J. Control
– year: 2017
  ident: bib0185
  article-title: A methodology for control structure adaptation in presence of varying, unknown sub-system interaction degree
  publication-title: Proc. of the 22nd IEEE International Conference on Emerging Technologies in Factory Automation ETFA
– volume: 24
  start-page: 149
  year: 1988
  end-page: 163
  ident: bib0100
  article-title: A comparative study of self-adaptive long-range predictive control methods
  publication-title: Automatica
– volume: 12
  start-page: 736
  year: 2016
  end-page: 744
  ident: bib0130
  article-title: A portable implementation on industrial devices of a predictive controller using graphical programming
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 249
  year: 2016
  end-page: 256
  ident: bib0070
  article-title: Cooperative reconfiguration of locally interconnected systems with limited model information: a plug-and-play approach
  publication-title: Proc. of the 2016 European Control Conference
– volume: 36
  start-page: 369
  year: 2015
  end-page: 380
  ident: bib0135
  article-title: A pragmatic approach to distributed nonlinear model predictive control: application to a hydrostatic drive train
  publication-title: Optim. Control Appl. Methods
– start-page: 6695
  year: 2014
  end-page: 6700
  ident: bib0175
  article-title: Certification of a class of industrial predictive controllers without terminal conditions
  publication-title: Proc. of the 53rd IEEE Conference on Decision and Control
– year: 2003
  ident: bib0105
  article-title: Model based predictive control for linear systems
  publication-title: UNESCO Encyclopaedia of Life Support Systems, Control Systems, Robotics and Automation, vol. XI, Article contribution 6.43.16.1
– volume: 17
  start-page: 203
  year: 2007
  end-page: 219
  ident: bib0180
  article-title: Feedback control for optimal process operation
  publication-title: J. Process Control
– volume: 51
  start-page: 21
  year: 2013
  end-page: 41
  ident: bib0035
  article-title: Distributed model predictive control: a tutorial review and future research directions
  publication-title: Comput. Chem. Eng.
– volume: 34
  start-page: 84
  year: 2014
  end-page: 97
  ident: bib0090
  article-title: Distributed model predictive control. An overview and roadmap of future research opportunities
  publication-title: IEEE Control Syst. Mag.
– volume: 17
  start-page: 191
  year: 2007
  end-page: 201
  ident: bib0015
  article-title: System architecture for process automation: review and trends
  publication-title: J. Process Control
– start-page: 1103
  year: 2016
  end-page: 1108
  ident: bib0160
  article-title: Constrained multivariable predictive control of a train of cryogenic c-13 separation columns
  publication-title: Proc. of the 11th IFAC Symposium on Dynamics and Control of Process Systems including Biosystems
– start-page: 190
  year: 2016
  end-page: 195
  ident: bib0075
  article-title: Cooperative game theory tools to detect critical nodes in distributed control systems
  publication-title: Proc. of the 2016 European Control Conference
– year: 2010
  ident: bib0020
  article-title: Decentralized Control of Large-Scale systems
– start-page: 2813
  year: 2007
  end-page: 2818
  ident: bib0030
  article-title: Decentralised model predictive control of constrained linear systems
  publication-title: Proc. of the European Control Conference
– volume: 27
  start-page: 1857
  year: 2016
  end-page: 1873
  ident: bib0155
  article-title: An automatic tuner with short experiment and probabilistic parameterization
  publication-title: Int. J. Robust Nonlinear Control
– volume: 19
  start-page: 723
  year: 2009
  end-page: 731
  ident: bib0040
  article-title: Architectures for distributed and hierarchical model predictive control− a review
  publication-title: J. Process Control
– volume: 69
  start-page: 117
  year: 2016
  ident: 10.1016/j.jprocont.2018.06.004_bib0050
  article-title: Distributed synthesis and stability of cooperative distributed model predictive control for linear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.02.009
– volume: 51
  start-page: 21
  year: 2013
  ident: 10.1016/j.jprocont.2018.06.004_bib0035
  article-title: Distributed model predictive control: a tutorial review and future research directions
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.05.011
– volume: 22
  start-page: 114
  year: 2014
  ident: 10.1016/j.jprocont.2018.06.004_bib0110
  article-title: Comparison of two-level NMPC and ILC strategies for wet-clutch control
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2013.10.003
– volume: 59
  start-page: 460
  issue: 8
  year: 2010
  ident: 10.1016/j.jprocont.2018.06.004_bib0060
  article-title: Cooperative distributed model predictive control
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2010.06.005
– volume: 85
  start-page: 1162
  issue: 8
  year: 2012
  ident: 10.1016/j.jprocont.2018.06.004_bib0045
  article-title: Assessment of non-centralised model predictive control techniques for electrical power networks
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2012.679972
– volume: 36
  start-page: 369
  issue: 3
  year: 2015
  ident: 10.1016/j.jprocont.2018.06.004_bib0135
  article-title: A pragmatic approach to distributed nonlinear model predictive control: application to a hydrostatic drive train
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2141
– volume: 6
  start-page: 453
  issue: 3
  year: 2012
  ident: 10.1016/j.jprocont.2018.06.004_bib0165
  article-title: Robustness evaluation of fractional order control for varying time delay processes
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-012-0322-4
– year: 2017
  ident: 10.1016/j.jprocont.2018.06.004_bib0185
  article-title: A methodology for control structure adaptation in presence of varying, unknown sub-system interaction degree
– volume: 27
  start-page: 1857
  year: 2016
  ident: 10.1016/j.jprocont.2018.06.004_bib0155
  article-title: An automatic tuner with short experiment and probabilistic parameterization
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.3640
– volume: 82
  start-page: 541
  issue: 3
  year: 2009
  ident: 10.1016/j.jprocont.2018.06.004_bib0025
  article-title: On decentralised control of non-linear interconnected systems
  publication-title: Int. J. Control
  doi: 10.1080/00207170802187247
– volume: 19
  start-page: 723
  issue: 5
  year: 2009
  ident: 10.1016/j.jprocont.2018.06.004_bib0040
  article-title: Architectures for distributed and hierarchical model predictive control− a review
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.02.003
– volume: 37
  start-page: 70
  issue: 1
  year: 2017
  ident: 10.1016/j.jprocont.2018.06.004_bib0080
  article-title: The role of population games and evolutionary dynamics in distributed control systems
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2016.2621479
– ident: 10.1016/j.jprocont.2018.06.004_bib0125
– volume: 28
  start-page: 537
  year: 2014
  ident: 10.1016/j.jprocont.2018.06.004_bib0115
  article-title: Lessons learned from closed loops in engineering: towards a multivariable approach regulating depth of anaesthesia
  publication-title: J. Clin. Monit. Comput.
  doi: 10.1007/s10877-013-9535-5
– year: 2014
  ident: 10.1016/j.jprocont.2018.06.004_bib0085
– start-page: 2813
  year: 2007
  ident: 10.1016/j.jprocont.2018.06.004_bib0030
  article-title: Decentralised model predictive control of constrained linear systems
– year: 2003
  ident: 10.1016/j.jprocont.2018.06.004_bib0105
  article-title: Model based predictive control for linear systems
– volume: 17
  start-page: 167
  issue: 1
  year: 1981
  ident: 10.1016/j.jprocont.2018.06.004_bib0095
  article-title: A self-tuning multistep predictor application
  publication-title: Automatica
  doi: 10.1016/0005-1098(81)90092-3
– volume: 48
  start-page: 1088
  issue: 6
  year: 2012
  ident: 10.1016/j.jprocont.2018.06.004_bib0055
  article-title: Distributed predictive control: a non-cooperative algorithm with neighbor-to-neighbor communication for linear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.03.020
– volume: 89
  start-page: 192
  year: 2016
  ident: 10.1016/j.jprocont.2018.06.004_bib0065
  article-title: Assessment and comparison of distributed model predictive control schemes: application to a natural gas refrigeration plant
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.03.001
– volume: 83
  start-page: 743
  year: 2009
  ident: 10.1016/j.jprocont.2018.06.004_bib0120
  article-title: Nonlinear predictive control with dead-time compensator: application to a solar power plant
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2008.11.005
– start-page: 6695
  year: 2014
  ident: 10.1016/j.jprocont.2018.06.004_bib0175
  article-title: Certification of a class of industrial predictive controllers without terminal conditions
– volume: 34
  start-page: 84
  issue: 4
  year: 2014
  ident: 10.1016/j.jprocont.2018.06.004_bib0090
  article-title: Distributed model predictive control. An overview and roadmap of future research opportunities
  publication-title: IEEE Control Syst. Mag.
– year: 2000
  ident: 10.1016/j.jprocont.2018.06.004_bib0170
– year: 2003
  ident: 10.1016/j.jprocont.2018.06.004_bib0140
  article-title: The disturbance model in model based predictive control
– start-page: 190
  year: 2016
  ident: 10.1016/j.jprocont.2018.06.004_bib0075
  article-title: Cooperative game theory tools to detect critical nodes in distributed control systems
– year: 2010
  ident: 10.1016/j.jprocont.2018.06.004_bib0020
– year: 1999
  ident: 10.1016/j.jprocont.2018.06.004_bib0150
– volume: 37
  start-page: 17
  issue: 1
  year: 2017
  ident: 10.1016/j.jprocont.2018.06.004_bib0010
  article-title: A survey on industry impact and challenges thereof [technical activities]
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2016.2621438
– volume: 24
  start-page: 149
  issue: 2
  year: 1988
  ident: 10.1016/j.jprocont.2018.06.004_bib0100
  article-title: A comparative study of self-adaptive long-range predictive control methods
  publication-title: Automatica
  doi: 10.1016/0005-1098(88)90024-6
– start-page: 1103
  year: 2016
  ident: 10.1016/j.jprocont.2018.06.004_bib0160
  article-title: Constrained multivariable predictive control of a train of cryogenic c-13 separation columns
– volume: 17
  start-page: 191
  issue: 3
  year: 2007
  ident: 10.1016/j.jprocont.2018.06.004_bib0015
  article-title: System architecture for process automation: review and trends
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2006.10.010
– volume: 17
  start-page: 203
  year: 2007
  ident: 10.1016/j.jprocont.2018.06.004_bib0180
  article-title: Feedback control for optimal process operation
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2006.10.011
– volume: 38
  start-page: 1
  year: 2016
  ident: 10.1016/j.jprocont.2018.06.004_bib0005
  article-title: The current state of control loop performance monitoring – a survey of application in industry
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.11.002
– start-page: 249
  year: 2016
  ident: 10.1016/j.jprocont.2018.06.004_bib0070
  article-title: Cooperative reconfiguration of locally interconnected systems with limited model information: a plug-and-play approach
– volume: 12
  start-page: 736
  year: 2016
  ident: 10.1016/j.jprocont.2018.06.004_bib0130
  article-title: A portable implementation on industrial devices of a predictive controller using graphical programming
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2532118
– year: 2009
  ident: 10.1016/j.jprocont.2018.06.004_bib0145
SSID ssj0003726
Score 2.3833249
Snippet •A novel formulation for DMPC architecture with input–output model.•Industrial considerations given through complexity simplifications in the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 240
SubjectTerms Information exchange
Interacting sub-systems
Model predictive control
Model uncertainties
Robustness
Title An industrially relevant formulation of a distributed model predictive control algorithm based on minimal process information
URI https://dx.doi.org/10.1016/j.jprocont.2018.06.004
Volume 68
WOSCitedRecordID wos000442706100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCygEOPAqI8pIP3KItG9u7ax9XUMSz4lCk3FbetQOJ0k2Ubqv0wH_iJzJ-bQytKD1wWUVW7MT5vnhmZ2fmQ-glzXUqlc4TwJonjDKdcM1oIlMJ5lWzpshtofCn4vCQTybiy2DwM9TCnC2KtuWbjVj9V6hhDMA2pbPXgLtfFAbgNYAOV4Adrv8EfGlyF4Mex-LcqqKAu9zZOkUv1uWqIpVpmmv0rsDptIo4pmOAmtkTsM9hl4tvy_Ws-348MgZPmYcLph3JsangckUGI998tYf4oq8b3ukX3YbBN07MuWyjjKHlatn56vd-8I0efQTO6ZANPtty2ogNNKc24At36XL0eT-OZIx5n0cXhyTBn2Dx6exEd8Lx6lo7eUtNXJvhC0bAxSPm-3OzOdiXSeBzXVqd0vHvXbf_sIZ9jmJIf5tXYZ3KrFPZPEB2A-2QIhN8iHbK9weTD731p4WV-Ov3ElWlX_6NLneIIifn6B664xHDpWPVfTTQ7S66G5Q_sDcEu-h21MbyAfpRtjimHA6UwxHl8HKKJY4ohy3l8JZy2LMD95TDlnIYJnvKYU8kHFHuIfr69uDo9bvEy3okDWWiSzS4oEXTKKlzcNAKXteKpJzVbEpSmQpSqzqnimiiiBprCW7WWFORZpxIPuW1po_QsAVuPUa4MY80MtII2khWj7kQmaxpTQnXhRBc7aEs_LZV43veG-mVRfV3dPfQq37eynV9uXKGCNBV3nd1PmkFrLxi7pNrf9pTdGv7B3qGht36VD9HN5uzbnayfuEp-Qv8T8gy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+industrially+relevant+formulation+of+a+distributed+model+predictive+control+algorithm+based+on+minimal+process+information&rft.jtitle=Journal+of+process+control&rft.au=Maxim%2C+Anca&rft.au=Copot%2C+Dana&rft.au=De+Keyser%2C+Robin&rft.au=Ionescu%2C+Clara+M.&rft.date=2018-08-01&rft.issn=0959-1524&rft.volume=68&rft.spage=240&rft.epage=253&rft_id=info:doi/10.1016%2Fj.jprocont.2018.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jprocont_2018_06_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon