A Variational Framework for Curve Shortening in Various Geometric Domains
Geodesics measure the shortest distance (either locally or globally) between two points on a curved surface and serve as a fundamental tool in digital geometry processing. Suppose that we have a parameterized path <inline-formula><tex-math notation="LaTeX">\gamma (t)=\mathbf {x...
Saved in:
| Published in: | IEEE transactions on visualization and computer graphics Vol. 29; no. 4; pp. 1951 - 1963 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Geodesics measure the shortest distance (either locally or globally) between two points on a curved surface and serve as a fundamental tool in digital geometry processing. Suppose that we have a parameterized path <inline-formula><tex-math notation="LaTeX">\gamma (t)=\mathbf {x}(u(t),v(t))</tex-math> <mml:math><mml:mrow><mml:mi>γ</mml:mi><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mi mathvariant="bold">x</mml:mi><mml:mo>(</mml:mo><mml:mi>u</mml:mi><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq1-3135021.gif"/> </inline-formula> on a surface <inline-formula><tex-math notation="LaTeX">\mathbf {x}=\mathbf {x}(u,v)</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="bold">x</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="bold">x</mml:mi><mml:mo>(</mml:mo><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq2-3135021.gif"/> </inline-formula> with <inline-formula><tex-math notation="LaTeX">\gamma (0)=p</tex-math> <mml:math><mml:mrow><mml:mi>γ</mml:mi><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mi>p</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq3-3135021.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\gamma (1)=q</tex-math> <mml:math><mml:mrow><mml:mi>γ</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq4-3135021.gif"/> </inline-formula>. We formulate the two-point geodesic problem into a minimization problem <inline-formula><tex-math notation="LaTeX">\int _0^1 H(\Vert \mathbf {x}_uu^{\prime }(t)+\mathbf {x}_vv^{\prime }(t)\Vert)\text{d}t</tex-math> <mml:math><mml:mrow><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mn>1</mml:mn></mml:msubsup><mml:mrow><mml:mi>H</mml:mi><mml:mo>(</mml:mo><mml:mo>∥</mml:mo></mml:mrow><mml:msub><mml:mi mathvariant="bold">x</mml:mi><mml:mi>u</mml:mi></mml:msub><mml:msup><mml:mi>u</mml:mi><mml:mo>'</mml:mo></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>+</mml:mo><mml:msub><mml:mi mathvariant="bold">x</mml:mi><mml:mi>v</mml:mi></mml:msub><mml:msup><mml:mi>v</mml:mi><mml:mo>'</mml:mo></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>∥</mml:mo><mml:mo>)</mml:mo></mml:mrow><mml:mtext>d</mml:mtext><mml:mi>t</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq5-3135021.gif"/> </inline-formula>, where <inline-formula><tex-math notation="LaTeX">H(s)</tex-math> <mml:math><mml:mrow><mml:mi>H</mml:mi><mml:mo>(</mml:mo><mml:mi>s</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq6-3135021.gif"/> </inline-formula> satisfies <inline-formula><tex-math notation="LaTeX">H(0)=0,H^{\prime }(s)>0</tex-math> <mml:math><mml:mrow><mml:mi>H</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:msup><mml:mi>H</mml:mi><mml:mo>'</mml:mo></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>s</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>></mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq7-3135021.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">H^{\prime \prime }(s)\geq 0</tex-math> <mml:math><mml:mrow><mml:msup><mml:mi>H</mml:mi><mml:mrow><mml:mo>'</mml:mo><mml:mo>'</mml:mo></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>s</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>≥</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq8-3135021.gif"/> </inline-formula> for <inline-formula><tex-math notation="LaTeX">s>0</tex-math> <mml:math><mml:mrow><mml:mi>s</mml:mi><mml:mo>></mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq9-3135021.gif"/> </inline-formula>. In our implementation, we choose <inline-formula><tex-math notation="LaTeX">H(s)=e^{s^2}-1</tex-math> <mml:math><mml:mrow><mml:mi>H</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>s</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mi>e</mml:mi><mml:msup><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:msup><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq10-3135021.gif"/> </inline-formula> and show that it has several unique advantages over other choices such as <inline-formula><tex-math notation="LaTeX">H(s)=s^2</tex-math> <mml:math><mml:mrow><mml:mi>H</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>s</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq11-3135021.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">H(s)=s</tex-math> <mml:math><mml:mrow><mml:mi>H</mml:mi><mml:mo>(</mml:mo><mml:mi>s</mml:mi><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mi>s</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq12-3135021.gif"/> </inline-formula>. It is also a minimizer of the traditional geodesic length variational and able to guarantee the uniqueness and regularity in terms of curve parameterization. In the discrete setting, we construct the initial path by a sequence of moveable points <inline-formula><tex-math notation="LaTeX">\lbrace x_i\rbrace _{i=1}^n</tex-math> <mml:math><mml:msubsup><mml:mrow><mml:mo>{</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>}</mml:mo></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mi>n</mml:mi></mml:msubsup></mml:math><inline-graphic xlink:href="xin-ieq13-3135021.gif"/> </inline-formula> and minimize <inline-formula><tex-math notation="LaTeX">\sum _{i=1}^{n} H(\Vert x_i - x_{i+1}\Vert)</tex-math> <mml:math><mml:mrow><mml:msubsup><mml:mo>∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mi>n</mml:mi></mml:msubsup><mml:mrow><mml:mi>H</mml:mi><mml:mo>(</mml:mo><mml:mo>∥</mml:mo></mml:mrow><mml:msub><mml:mi>x</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mrow><mml:mi>i</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mrow><mml:mo>∥</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="xin-ieq14-3135021.gif"/> </inline-formula>. The resulting points are evenly spaced along the path. It's obvious that our algorithm can deal with parametric surfaces. Considering that meshes, point clouds and implicit surfaces can be transformed into a signed distance function (SDF), we also discuss its implementation on a general SDF. Finally, we show that our method can be extended to solve a general least-cost path problem. We validate the proposed algorithm in terms of accuracy, performance and scalability, and demonstrate the advantages by extensive comparisons. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1077-2626 1941-0506 1941-0506 |
| DOI: | 10.1109/TVCG.2021.3135021 |