A Dynamic Multiobjective Evolutionary Algorithm Based on Decision Variable Classification

In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 52; číslo 3; s. 1602 - 1615
Hlavní autori: Liang, Zhengping, Wu, Tiancheng, Ma, Xiaoliang, Zhu, Zexuan, Yang, Shengxiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjective evolutionary algorithms. Maintaining a good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a DMOEA based on decision variable classification (DMOEA-DVC) is proposed in this article. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and changes response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. The experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.2986600