Efficient algorithms for robust and stable principal component pursuit problems
The problem of recovering a low-rank matrix from a set of observations corrupted with gross sparse error is known as the robust principal component analysis (RPCA) and has many applications in computer vision, image processing and web data ranking. It has been shown that under certain conditions, th...
Uložené v:
| Vydané v: | Computational optimization and applications Ročník 58; číslo 1; s. 1 - 29 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.05.2014
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!