Multi-objective optimization for sensor placement: An integrated combinatorial approach with reduced order model and Gaussian process
•We devise a multi-objective optimization (MOO) for sensor placement.•Our MOO integrates reduced order model and lazy greedy combinatorial approach.•We develop branch and bound exact method to validate the Pareto frontier.•We validate our method by a temperature sensor placement example. We develop...
Saved in:
| Published in: | Measurement : journal of the International Measurement Confederation Vol. 187; p. 110370 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Elsevier Ltd
01.01.2022
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0263-2241, 1873-412X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We devise a multi-objective optimization (MOO) for sensor placement.•Our MOO integrates reduced order model and lazy greedy combinatorial approach.•We develop branch and bound exact method to validate the Pareto frontier.•We validate our method by a temperature sensor placement example.
We develop a novel sensor placement method that maximizes monitoring performance while minimizing deployment cost. Our method integrates a reduced order model and multi-objective combinatorial optimization. We first decompose the spatio-temporal state field to be monitored by proper orthogonal decomposition (POD), and we use the Gaussian Process to model the uncertainty in each POD mode. Next, we develop a lazy greedy (LG)-∊-constraint optimization to derive the Pareto-optimal sensor configurations. We further design a branch and bound algorithm to calculate the global optimum and validate the correctness of select configurations on the LG-derived Pareto frontier. We evaluate and benchmark our algorithm in computational experiments based on the temperature dataset of the Berkeley Intel Lab. The computational results demonstrate that our algorithm places sensors at locations of large magnitude in the POD modes, and that our method achieves better state estimation accuracy and smaller reconstruction errors compared with alternative methods. |
|---|---|
| AbstractList | We develop a novel sensor placement method that maximizes monitoring performance while minimizing deployment cost. Our method integrates a reduced order model and multi-objective combinatorial optimization. We first decompose the spatio-temporal state field to be monitored by proper orthogonal decomposition (POD), and we use the Gaussian Process to model the uncertainty in each POD mode. Next, we develop a lazy greedy (LG)∊ -constraint optimization to derive the Pareto-optimal sensor configurations. We further design a branch and bound algorithm to calculate the global optimum and validate the correctness of select configurations on the LG-derived Pareto frontier. We evaluate and benchmark our algorithm in computational experiments based on the temperature dataset of the Berkeley Intel Lab. The computational results demonstrate that our algorithm places sensors at locations of large magnitude in the POD modes, and that our method achieves better state estimation accuracy and smaller reconstruction errors compared with alternative methods. •We devise a multi-objective optimization (MOO) for sensor placement.•Our MOO integrates reduced order model and lazy greedy combinatorial approach.•We develop branch and bound exact method to validate the Pareto frontier.•We validate our method by a temperature sensor placement example. We develop a novel sensor placement method that maximizes monitoring performance while minimizing deployment cost. Our method integrates a reduced order model and multi-objective combinatorial optimization. We first decompose the spatio-temporal state field to be monitored by proper orthogonal decomposition (POD), and we use the Gaussian Process to model the uncertainty in each POD mode. Next, we develop a lazy greedy (LG)-∊-constraint optimization to derive the Pareto-optimal sensor configurations. We further design a branch and bound algorithm to calculate the global optimum and validate the correctness of select configurations on the LG-derived Pareto frontier. We evaluate and benchmark our algorithm in computational experiments based on the temperature dataset of the Berkeley Intel Lab. The computational results demonstrate that our algorithm places sensors at locations of large magnitude in the POD modes, and that our method achieves better state estimation accuracy and smaller reconstruction errors compared with alternative methods. |
| ArticleNumber | 110370 |
| Author | Homer Saleh, Joseph Xu, Zhaoyi Guo, Yanjie |
| Author_xml | – sequence: 1 givenname: Zhaoyi surname: Xu fullname: Xu, Zhaoyi email: zxu328@gatech.edu – sequence: 2 givenname: Yanjie surname: Guo fullname: Guo, Yanjie – sequence: 3 givenname: Joseph surname: Homer Saleh fullname: Homer Saleh, Joseph |
| BookMark | eNqNkU1P3DAURa2KSh1o_4OrrjP4I3GSbio0agEJxKaVurPe2C_FUWKntgNq9_3fGIZFxYrV3Zx3r3TeMTnywSMhHznbcsbV6bidEdIacUaft4IJvuWcyZa9IRvetbKqufh5RDZMKFkJUfN35DilkTGmZK825N_1OmVXhf2IJrs7pGHJbnZ_Ibvg6RAiTehTiWUC8zTymZ556nzGXxEyWmrCvHcecogOJgrLEgOYW3rv8i2NaFdTmBAtRjoHi4Xwlp7DmpIDTwtsMKX35O0AU8IPz3lCfnz7-n13UV3dnF_uzq4qI-s-V2aoW6s6kBYa2zYc-rYX3BjW4sAQTK-44XVjJestF8o2TSNQ2k5C08Cw7-QJ-XToLbu_V0xZj2GNvkxqoUStOlXLulBfDpSJIaWIgzYuPwnJEdykOdOP7vWo_3OvH93rg_vS0L9oWKKbIf551e3ucItFxJ3DqJNx6ItGF8uPtA3uFS0PN-asTA |
| CitedBy_id | crossref_primary_10_3390_jmse12071220 crossref_primary_10_3390_s24165393 crossref_primary_10_1109_ACCESS_2025_3541930 crossref_primary_10_1109_JIOT_2023_3303124 crossref_primary_10_1016_j_jobe_2024_111540 crossref_primary_10_3390_app15137463 crossref_primary_10_1007_s11356_023_26075_5 crossref_primary_10_1016_j_jprocont_2025_103493 crossref_primary_10_1177_1748006X221114735 crossref_primary_10_32604_cmc_2025_059184 crossref_primary_10_3390_s25092661 crossref_primary_10_1016_j_ress_2023_109336 crossref_primary_10_1016_j_ymssp_2023_110319 crossref_primary_10_1016_j_ymssp_2024_111523 crossref_primary_10_1002_tal_2125 crossref_primary_10_1016_j_ast_2025_110685 crossref_primary_10_1016_j_probengmech_2023_103534 |
| Cites_doi | 10.1109/JSEN.2018.2887044 10.1016/j.trc.2012.06.008 10.3390/s20113113 10.1146/annurev.fl.25.010193.002543 10.1002/stc.1707 10.1504/IJAACS.2013.052925 10.1016/j.jmp.2018.03.001 10.1007/BF01442131 10.1016/j.dam.2012.05.025 10.1177/1475921719825601 10.1016/j.measurement.2014.05.028 10.1016/j.cma.2020.113042 10.1016/j.compfluid.2017.10.002 10.1002/9780470061626.shm086 10.1002/stc.2605 10.1016/j.jnca.2017.05.004 10.1016/j.ymssp.2021.107774 10.18517/ijaseit.7.1.1514 10.1061/(ASCE)AS.1943-5525.0001226 10.1002/ceat.201600674 10.1109/JSEN.2018.2850847 10.1002/stc.2274 10.1080/10586458.2003.10504492 10.1177/1475921719877579 10.1109/TEVC.2014.2378512 10.1177/1369433218797074 10.1111/mice.12553 10.1016/j.measurement.2019.06.021 10.1109/ISSNIP.2015.7106946 10.1109/JIOT.2014.2314132 10.1016/j.ins.2018.06.055 10.1016/j.jnca.2016.12.008 10.1016/j.seta.2021.101183 10.1016/j.measurement.2016.05.089 10.1049/iet-its.2010.0129 10.1016/j.ymssp.2020.107363 10.2307/121074 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Jan 2022 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jan 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2021.110370 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| ExternalDocumentID | 10_1016_j_measurement_2021_110370 S0263224121012641 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF |
| ID | FETCH-LOGICAL-c349t-cf47d68a3da5d751a97921cc07ef0eac961c145d309d126d5552e3d83a55afb83 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000749736000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-2241 |
| IngestDate | Wed Aug 13 11:32:35 EDT 2025 Sat Nov 29 07:22:05 EST 2025 Tue Nov 18 20:53:53 EST 2025 Fri Feb 23 02:41:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sensor placement Proper orthogonal decomposition Lazy greedy algorithm Branch and bound Multi-objective combinatorial optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-cf47d68a3da5d751a97921cc07ef0eac961c145d309d126d5552e3d83a55afb83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2624686434 |
| PQPubID | 2047460 |
| ParticipantIDs | proquest_journals_2624686434 crossref_citationtrail_10_1016_j_measurement_2021_110370 crossref_primary_10_1016_j_measurement_2021_110370 elsevier_sciencedirect_doi_10_1016_j_measurement_2021_110370 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Clark, Askham, Brunton, Nathan Kutz (b0190) 2019; 19 Williams, Rasmussen (b0270) 2006; Vol. 2, No. 3 Ostachowicz, Soman, Malinowski (b0070) 2019; 18 Serna, M.Á., Sreenan, C.J. and Fedor, S., 2015, April. A visual programming framework for wireless sensor networks in smart home applications. In Ma, Liang, Zheng (b0225) 2017; 93 Pascale, Nicoli, Deflorio, Dalla Chiara, Spagnolini (b0020) 2012; 6 Lu, Wen, Teng, Li, Li (b0085) 2016; 91 Wu, Xu, Kumari, Li, Shen, Choo, Wazid, Das (b0045) 2017; 89 Minoux (b0280) 1978 Xing, Tan, Liu, Wang, Jia, Yi (b0055) 2009 Castello, Chen, Fan, Davari (b0015) 2013; 6 Chatterjee (b0260) 2000 (Doctoral dissertation, PhD thesis, Carnegie Mellon University.(Section 5.7)). Lin, Chiu (b0170) 2005; 9 Optimizing sensing He, Jia, Liu, Zhao (b0115) 2019; 146 Berkooz, Holmes, Lumley (b0250) 1993; 25 USA: Intel Corporation, 2004 [2004-06-08]. http://berkeley, intel-research, net/labdata, html. Bottero, Dalla Chiara, Deflorio (b0025) 2013; 26 Yang (b0065) 2021; 158 Hu, Dai, Yan, Gong, Liu, Wang (b0120) 2020; 509 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) Zhu, Wang, Chen, Liu, Qin (b0040) 2010 Abidin, Din, Radzi, Rizman (b0075) 2017; 7 Gabelle, Morchain, Liné (b0255) 2017; 40 Islam, Shen, Wang (b0005) 2012 Liu, Sun, Li, Qian, Zhou (b0165) 2016; 36 Censor (b0220) 1977; 4 Duan, Gao, Yang, Foh, Chen (b0035) 2014; 1 Barthorpe, R.J. and Worden, K., 2009. Sensor placement optimization. Du, D.Z. and Pardalos, P.M. eds., 2013. Błachowski, Świercz, Ostrowski, Tauzowski, Olaszek, Jankowski (b0200) 2020; 35 Zhang, Tian, Jin (b0245) 2015; 19 Madden, S., 2003. Intel Berkeley research lab data. Yang, Liang, Zhang (b0140) 2020; 366 Katanforoush, Shahshahani (b0290) 2003; 12 Brunton, B.W., Brunton, S.L., Proctor, J.L. and Kutz, J.N., 2013. Optimal sensor placement and enhanced sparsity for classification. Bhattacharyya, Beck (b0205) 2020; 27 Ma, Liang, Zheng (b0230) 2016 Pike-Burke, C., 2019. Multi-objective optimization. Krause, Singh, Guestrin (b0135) 2008; 9 Yang (b0060) 2021; 151 Zan, Gupta, Wang, Dauwels, Ukil (b0090) 2018; 18 Hou, Xia, Xia, Zhou (b0195) 2019; 26 D’Antona, Seifnaraghi (b0110) 2014; 56 Zhou, Xie, Yi, Li (b0150) 2019; 22 Damianou, Lawrence (b0215) 2013 Deshpande, Guestrin, Madden, Hellerstein, Hong (b0265) 2004 Yang, Hou, Chang (b0145) 2021; 45 Léger (b0300) 1999; 149 Wen, Pan, Le (b0030) 2007 (Vol. 4). Springer Science & Business Media. Clausen (b0240) 1999 Semaan (b0155) 2017; 159 Ullo, Sinha (b0050) 2020; 20 Guiașu (b0235) 1977 Krause, A., 2008. Zhou, Yi, Xie, Li, Xu (b0100) 2021; 34 Kolmogorov (b0305) 2012; 160 (pp. 1-6). IEEE. Padula, S.L. and Kincaid, R.K., 1999. Optimization strategies for sensor and actuator placement. Kekatos, Giannakis (b0210) 2011 Kasper, Mathelin, Abou-Kandil (b0160) 2015 Zhou, Yi, Zhang, Li (b0105) 2015; 22 Chaloner, Verdinelli (b0295) 1995 Tan, Zhang (b0095) 2020; 19 arXiv preprint arXiv:1310.4217. Minimax and applications Encyclopedia of structural health monitoring. Schulz, Speekenbrink, Krause (b0180) 2018; 85 Tan (10.1016/j.measurement.2021.110370_b0095) 2020; 19 Schulz (10.1016/j.measurement.2021.110370_b0180) 2018; 85 Damianou (10.1016/j.measurement.2021.110370_b0215) 2013 Bottero (10.1016/j.measurement.2021.110370_b0025) 2013; 26 Kekatos (10.1016/j.measurement.2021.110370_b0210) 2011 Ullo (10.1016/j.measurement.2021.110370_b0050) 2020; 20 Gabelle (10.1016/j.measurement.2021.110370_b0255) 2017; 40 Kasper (10.1016/j.measurement.2021.110370_b0160) 2015 Ma (10.1016/j.measurement.2021.110370_b0225) 2017; 93 Duan (10.1016/j.measurement.2021.110370_b0035) 2014; 1 Léger (10.1016/j.measurement.2021.110370_b0300) 1999; 149 Zan (10.1016/j.measurement.2021.110370_b0090) 2018; 18 10.1016/j.measurement.2021.110370_b0285 Pascale (10.1016/j.measurement.2021.110370_b0020) 2012; 6 Błachowski (10.1016/j.measurement.2021.110370_b0200) 2020; 35 Bhattacharyya (10.1016/j.measurement.2021.110370_b0205) 2020; 27 10.1016/j.measurement.2021.110370_b0080 Zhu (10.1016/j.measurement.2021.110370_b0040) 2010 Katanforoush (10.1016/j.measurement.2021.110370_b0290) 2003; 12 10.1016/j.measurement.2021.110370_b0125 Chaloner (10.1016/j.measurement.2021.110370_b0295) 1995 Xing (10.1016/j.measurement.2021.110370_b0055) 2009 Semaan (10.1016/j.measurement.2021.110370_b0155) 2017; 159 Ma (10.1016/j.measurement.2021.110370_b0230) 2016 Berkooz (10.1016/j.measurement.2021.110370_b0250) 1993; 25 Deshpande (10.1016/j.measurement.2021.110370_b0265) 2004 Islam (10.1016/j.measurement.2021.110370_b0005) 2012 10.1016/j.measurement.2021.110370_b0175 10.1016/j.measurement.2021.110370_b0010 10.1016/j.measurement.2021.110370_b0130 Wu (10.1016/j.measurement.2021.110370_b0045) 2017; 89 Castello (10.1016/j.measurement.2021.110370_b0015) 2013; 6 Chatterjee (10.1016/j.measurement.2021.110370_b0260) 2000 Hu (10.1016/j.measurement.2021.110370_b0120) 2020; 509 Williams (10.1016/j.measurement.2021.110370_b0270) 2006; Vol. 2, No. 3 Zhou (10.1016/j.measurement.2021.110370_b0100) 2021; 34 Liu (10.1016/j.measurement.2021.110370_b0165) 2016; 36 Guiașu (10.1016/j.measurement.2021.110370_b0235) 1977 Zhou (10.1016/j.measurement.2021.110370_b0150) 2019; 22 He (10.1016/j.measurement.2021.110370_b0115) 2019; 146 Yang (10.1016/j.measurement.2021.110370_b0140) 2020; 366 Wen (10.1016/j.measurement.2021.110370_b0030) 2007 10.1016/j.measurement.2021.110370_b0185 Kolmogorov (10.1016/j.measurement.2021.110370_b0305) 2012; 160 Yang (10.1016/j.measurement.2021.110370_b0145) 2021; 45 Yang (10.1016/j.measurement.2021.110370_b0060) 2021; 151 Ostachowicz (10.1016/j.measurement.2021.110370_b0070) 2019; 18 Minoux (10.1016/j.measurement.2021.110370_b0280) 1978 D’Antona (10.1016/j.measurement.2021.110370_b0110) 2014; 56 Abidin (10.1016/j.measurement.2021.110370_b0075) 2017; 7 Krause (10.1016/j.measurement.2021.110370_b0135) 2008; 9 Censor (10.1016/j.measurement.2021.110370_b0220) 1977; 4 Zhou (10.1016/j.measurement.2021.110370_b0105) 2015; 22 Zhang (10.1016/j.measurement.2021.110370_b0245) 2015; 19 Lu (10.1016/j.measurement.2021.110370_b0085) 2016; 91 Clark (10.1016/j.measurement.2021.110370_b0190) 2019; 19 Yang (10.1016/j.measurement.2021.110370_b0065) 2021; 158 10.1016/j.measurement.2021.110370_b0275 Lin (10.1016/j.measurement.2021.110370_b0170) 2005; 9 Clausen (10.1016/j.measurement.2021.110370_b0240) 1999 Hou (10.1016/j.measurement.2021.110370_b0195) 2019; 26 |
| References_xml | – start-page: 626 year: 2012 end-page: 633 ident: b0005 publication-title: May. Security and privacy considerations for wireless sensor networks in smart home environments – start-page: 145 year: 2011 end-page: 148 ident: b0210 publication-title: December. A convex relaxation approach to optimal placement of phasor measurement units – reference: Madden, S., 2003. Intel Berkeley research lab data. – volume: 26 start-page: 99 year: 2013 end-page: 124 ident: b0025 article-title: Wireless sensor networks for traffic monitoring in a logistic centre publication-title: Transportation Research Part C: Emerging Technologies – volume: 151 start-page: 107363 year: 2021 ident: b0060 article-title: An adaptive sensor placement algorithm for structural health monitoring based on multi-objective iterative optimization using weight factor updating publication-title: Mech. Syst. Sig. Process. – reference: Padula, S.L. and Kincaid, R.K., 1999. Optimization strategies for sensor and actuator placement. – volume: 27 year: 2020 ident: b0205 article-title: Exploiting convexification for Bayesian optimal sensor placement by maximization of mutual information publication-title: Structural Control and Health Monitoring – volume: 93 start-page: 76 year: 2017 end-page: 90 ident: b0225 article-title: Delay constrained relay node placement in two-tiered wireless sensor networks: A set-covering-based algorithm publication-title: Journal of Network and Computer Applications – volume: 159 start-page: 167 year: 2017 end-page: 176 ident: b0155 article-title: Optimal sensor placement using machine learning publication-title: Comput. Fluids – volume: 22 start-page: 907 year: 2019 end-page: 918 ident: b0150 article-title: Optimal wireless sensor network configuration for structural monitoring using automatic-learning firefly algorithm publication-title: Adv. Struct. Eng. – volume: 9 start-page: 235 year: 2008 end-page: 284 ident: b0135 article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies publication-title: Journal of Machine Learning Research – volume: 6 start-page: 99 year: 2013 end-page: 114 ident: b0015 article-title: Context aware wireless sensor networks for smart home monitoring publication-title: International Journal of Autonomous and Adaptive Communications Systems 10 – start-page: 347 year: 2010 end-page: 352 ident: b0040 publication-title: December. Iot gateway: Bridgingwireless sensor networks into internet of things – volume: 85 start-page: 1 year: 2018 end-page: 16 ident: b0180 article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions publication-title: J. Math. Psychol. – reference: Pike-Burke, C., 2019. Multi-objective optimization. – volume: 89 start-page: 72 year: 2017 end-page: 85 ident: b0045 article-title: An efficient authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment publication-title: Journal of Network and Computer Applications – volume: 4 start-page: 41 year: 1977 end-page: 59 ident: b0220 article-title: Pareto optimality in multiobjective problems publication-title: Appl. Math. Optim. – volume: 18 start-page: 963 year: 2019 end-page: 988 ident: b0070 article-title: Optimization of sensor placement for structural health monitoring: A review publication-title: Structural Health Monitoring – reference: Serna, M.Á., Sreenan, C.J. and Fedor, S., 2015, April. A visual programming framework for wireless sensor networks in smart home applications. In – reference: Encyclopedia of structural health monitoring. – reference: Optimizing sensing – start-page: 808 year: 2000 end-page: 817 ident: b0260 article-title: An introduction to the proper orthogonal decomposition publication-title: Curr. Sci. – volume: 34 start-page: 04020112 year: 2021 ident: b0100 article-title: Optimal Wireless Sensor Placement in Structural Health Monitoring Emphasizing Information Effectiveness and Network Performance publication-title: J. Aerosp. Eng. – volume: 56 start-page: 58 year: 2014 end-page: 69 ident: b0110 article-title: Analysis of the sensor placement for optimal temperature distribution reconstruction publication-title: Measurement – volume: 7 start-page: 190 year: 2017 end-page: 197 ident: b0075 article-title: A review on sensor node placement techniques in wireless sensor networks publication-title: International Journal on Advanced Science, Engineering and Information Technology – volume: 158 start-page: 107774 year: 2021 ident: b0065 article-title: A novel uncertainty-oriented regularization method for load identification publication-title: Mech. Syst. Sig. Process. – volume: 509 start-page: 488 year: 2020 end-page: 500 ident: b0120 article-title: Modified NSGA-III for sensor placement in water distribution system publication-title: Inf. Sci. – volume: 19 start-page: 761 year: 2015 end-page: 776 ident: b0245 article-title: A knee point-driven evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 36 start-page: 421 year: 2016 end-page: 434 ident: b0165 article-title: Machine learning for noise sensor placement and full-chip voltage emergency detection publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. – volume: 26 start-page: e2274 year: 2019 ident: b0195 article-title: Genetic algorithm based optimal sensor placement for L1-regularized damage detection publication-title: Structural Control and Health Monitoring – start-page: 273 year: 1995 end-page: 304 ident: b0295 article-title: Bayesian experimental design: A review publication-title: Statistical Science – volume: 6 start-page: 67 year: 2012 end-page: 77 ident: b0020 article-title: Wireless sensor networks for traffic management and road safety publication-title: IET Intel. Transport Syst. – volume: 19 start-page: 2642 year: 2019 end-page: 2656 ident: b0190 article-title: Greedy sensor placement with cost constraints publication-title: IEEE Sens. J. – volume: 25 start-page: 539 year: 1993 end-page: 575 ident: b0250 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu. Rev. Fluid Mech. – volume: 35 start-page: 1085 year: 2020 end-page: 1100 ident: b0200 article-title: Convex relaxation for efficient sensor layout optimization in large-scale structures subjected to moving loads publication-title: Comput.-Aided Civ. Infrastruct. Eng. – reference: 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) – reference: Minimax and applications – start-page: 588 year: 2004 end-page: 599 ident: b0265 article-title: August. Model-driven data acquisition in sensor networks publication-title: In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30 – volume: 366 start-page: 113042 year: 2020 ident: b0140 article-title: Strategy for sensor number determination and placement optimization with incomplete information based on interval possibility model and clustering avoidance distribution index publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 4479 year: 2015 end-page: 4484 ident: b0160 publication-title: July. A machine learning approach for constrained sensor placement – volume: 9 start-page: 43 year: 2005 end-page: 45 ident: b0170 article-title: A near-optimal sensor placement algorithm to achieve complete coverage-discrimination in sensor networks publication-title: IEEE Commun. Lett. – volume: 40 start-page: 927 year: 2017 end-page: 937 ident: b0255 article-title: Kinetic energy transfer between first proper orthogonal decomposition modes in a mixing tank publication-title: Chem. Eng. Technol. – reference: Du, D.Z. and Pardalos, P.M. eds., 2013. – start-page: 1 year: 2016 end-page: 6 ident: b0230 publication-title: May. Set-covering-based algorithm for delay constrained relay node placement in wireless sensor networks – volume: 146 start-page: 230 year: 2019 end-page: 240 ident: b0115 article-title: Sensor layout optimization by integrating Bayesian approach to diagnose multi-station assembly processes publication-title: Measurement – volume: 22 start-page: 648 year: 2015 end-page: 666 ident: b0105 article-title: Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm publication-title: Structural Control and Health Monitoring – reference: USA: Intel Corporation, 2004 [2004-06-08]. http://berkeley, intel-research, net/labdata, html. – volume: 149 start-page: 831 year: 1999 end-page: 869 ident: b0300 article-title: Menger curvature and rectifiability publication-title: Ann. Math. – start-page: 2079 year: 2007 end-page: 2084 ident: b0030 article-title: Survey on application of wireless sensor networks for traffic monitoring publication-title: In International Conference on Transportation Engineering 2007 – volume: 160 start-page: 2246 year: 2012 end-page: 2258 ident: b0305 article-title: Minimizing a sum of submodular functions publication-title: Discrete Appl. Math. – reference: Krause, A., 2008. – reference: Barthorpe, R.J. and Worden, K., 2009. Sensor placement optimization. – volume: 20 start-page: 3113 year: 2020 ident: b0050 article-title: Advances in Smart Environment Monitoring Systems Using IoT and Sensors publication-title: Sensors – year: 1977 ident: b0235 article-title: Information theory with new applications – volume: 18 start-page: 6660 year: 2018 end-page: 6668 ident: b0090 article-title: Multi-objective optimal sensor placement for low-pressure gas distribution networks publication-title: IEEE Sens. J. – volume: 45 start-page: 101183 year: 2021 ident: b0145 article-title: A synchronous placement and size-based multi-objective optimization method for heat dissipation design on antenna module of space solar power satellite publication-title: Sustainable Energy Technol. Assess. – reference: Brunton, B.W., Brunton, S.L., Proctor, J.L. and Kutz, J.N., 2013. Optimal sensor placement and enhanced sparsity for classification. – reference: (Vol. 4). Springer Science & Business Media. – reference: (Doctoral dissertation, PhD thesis, Carnegie Mellon University.(Section 5.7)). – volume: 19 start-page: 1287 year: 2020 end-page: 1308 ident: b0095 article-title: Computational methodologies for optimal sensor placement in structural health monitoring: A review publication-title: Structural Health Monitoring – volume: 91 start-page: 509 year: 2016 end-page: 518 ident: b0085 article-title: Data correlation analysis for optimal sensor placement using a bond energy algorithm publication-title: Measurement – reference: arXiv preprint arXiv:1310.4217. – start-page: 207 year: 2013 end-page: 215 ident: b0215 article-title: April. Deep gaussian processes publication-title: In Artificial Intelligence and Statistics – reference: (pp. 1-6). IEEE. – volume: Vol. 2, No. 3 start-page: p. 4). year: 2006 ident: b0270 publication-title: Gaussian processes for machine learning – start-page: 234 year: 1978 end-page: 243 ident: b0280 publication-title: Lecture Notes in Control and Information SciencesOptimization Techniques – start-page: 1 year: 1999 end-page: 30 ident: b0240 article-title: Branch and bound algorithms-principles and examples – volume: 1 start-page: 58 year: 2014 end-page: 69 ident: b0035 article-title: An energy-aware trust derivation scheme with game theoretic approach in wireless sensor networks for IoT applications publication-title: IEEE Internet Things J. – volume: 12 start-page: 199 year: 2003 end-page: 209 ident: b0290 article-title: Distributing points on the sphere publication-title: I. Experimental Mathematics – start-page: 157 year: 2009 end-page: 168 ident: b0055 article-title: September. Data fusion improves the coverage of wireless sensor networks publication-title: In Proceedings of the 15th annual international conference on Mobile computing and networking – volume: 19 start-page: 2642 issue: 7 year: 2019 ident: 10.1016/j.measurement.2021.110370_b0190 article-title: Greedy sensor placement with cost constraints publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2887044 – volume: 26 start-page: 99 year: 2013 ident: 10.1016/j.measurement.2021.110370_b0025 article-title: Wireless sensor networks for traffic monitoring in a logistic centre publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2012.06.008 – volume: 20 start-page: 3113 issue: 11 year: 2020 ident: 10.1016/j.measurement.2021.110370_b0050 article-title: Advances in Smart Environment Monitoring Systems Using IoT and Sensors publication-title: Sensors doi: 10.3390/s20113113 – volume: 25 start-page: 539 issue: 1 year: 1993 ident: 10.1016/j.measurement.2021.110370_b0250 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.25.010193.002543 – volume: 22 start-page: 648 issue: 4 year: 2015 ident: 10.1016/j.measurement.2021.110370_b0105 article-title: Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.1707 – volume: 6 start-page: 99 issue: 2 year: 2013 ident: 10.1016/j.measurement.2021.110370_b0015 article-title: Context aware wireless sensor networks for smart home monitoring publication-title: International Journal of Autonomous and Adaptive Communications Systems 10 doi: 10.1504/IJAACS.2013.052925 – volume: 36 start-page: 421 issue: 3 year: 2016 ident: 10.1016/j.measurement.2021.110370_b0165 article-title: Machine learning for noise sensor placement and full-chip voltage emergency detection publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. – start-page: 234 year: 1978 ident: 10.1016/j.measurement.2021.110370_b0280 – volume: 85 start-page: 1 year: 2018 ident: 10.1016/j.measurement.2021.110370_b0180 article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2018.03.001 – volume: 4 start-page: 41 issue: 1 year: 1977 ident: 10.1016/j.measurement.2021.110370_b0220 article-title: Pareto optimality in multiobjective problems publication-title: Appl. Math. Optim. doi: 10.1007/BF01442131 – start-page: 207 year: 2013 ident: 10.1016/j.measurement.2021.110370_b0215 article-title: April. Deep gaussian processes – volume: Vol. 2, No. 3 start-page: p. 4). year: 2006 ident: 10.1016/j.measurement.2021.110370_b0270 publication-title: Gaussian processes for machine learning – volume: 160 start-page: 2246 issue: 15 year: 2012 ident: 10.1016/j.measurement.2021.110370_b0305 article-title: Minimizing a sum of submodular functions publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2012.05.025 – start-page: 2079 year: 2007 ident: 10.1016/j.measurement.2021.110370_b0030 article-title: Survey on application of wireless sensor networks for traffic monitoring – volume: 18 start-page: 963 issue: 3 year: 2019 ident: 10.1016/j.measurement.2021.110370_b0070 article-title: Optimization of sensor placement for structural health monitoring: A review publication-title: Structural Health Monitoring doi: 10.1177/1475921719825601 – volume: 56 start-page: 58 year: 2014 ident: 10.1016/j.measurement.2021.110370_b0110 article-title: Analysis of the sensor placement for optimal temperature distribution reconstruction publication-title: Measurement doi: 10.1016/j.measurement.2014.05.028 – volume: 366 start-page: 113042 year: 2020 ident: 10.1016/j.measurement.2021.110370_b0140 article-title: Strategy for sensor number determination and placement optimization with incomplete information based on interval possibility model and clustering avoidance distribution index publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113042 – volume: 159 start-page: 167 year: 2017 ident: 10.1016/j.measurement.2021.110370_b0155 article-title: Optimal sensor placement using machine learning publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2017.10.002 – start-page: 808 year: 2000 ident: 10.1016/j.measurement.2021.110370_b0260 article-title: An introduction to the proper orthogonal decomposition publication-title: Curr. Sci. – ident: 10.1016/j.measurement.2021.110370_b0125 doi: 10.1002/9780470061626.shm086 – volume: 27 issue: 10 year: 2020 ident: 10.1016/j.measurement.2021.110370_b0205 article-title: Exploiting convexification for Bayesian optimal sensor placement by maximization of mutual information publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2605 – ident: 10.1016/j.measurement.2021.110370_b0185 – start-page: 1 year: 2016 ident: 10.1016/j.measurement.2021.110370_b0230 – start-page: 588 year: 2004 ident: 10.1016/j.measurement.2021.110370_b0265 article-title: August. Model-driven data acquisition in sensor networks – ident: 10.1016/j.measurement.2021.110370_b0175 – start-page: 157 year: 2009 ident: 10.1016/j.measurement.2021.110370_b0055 article-title: September. Data fusion improves the coverage of wireless sensor networks – start-page: 347 year: 2010 ident: 10.1016/j.measurement.2021.110370_b0040 – volume: 93 start-page: 76 year: 2017 ident: 10.1016/j.measurement.2021.110370_b0225 article-title: Delay constrained relay node placement in two-tiered wireless sensor networks: A set-covering-based algorithm publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2017.05.004 – volume: 158 start-page: 107774 year: 2021 ident: 10.1016/j.measurement.2021.110370_b0065 article-title: A novel uncertainty-oriented regularization method for load identification publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2021.107774 – volume: 7 start-page: 190 issue: 1 year: 2017 ident: 10.1016/j.measurement.2021.110370_b0075 article-title: A review on sensor node placement techniques in wireless sensor networks publication-title: International Journal on Advanced Science, Engineering and Information Technology doi: 10.18517/ijaseit.7.1.1514 – volume: 34 start-page: 04020112 issue: 2 year: 2021 ident: 10.1016/j.measurement.2021.110370_b0100 article-title: Optimal Wireless Sensor Placement in Structural Health Monitoring Emphasizing Information Effectiveness and Network Performance publication-title: J. Aerosp. Eng. doi: 10.1061/(ASCE)AS.1943-5525.0001226 – volume: 40 start-page: 927 issue: 5 year: 2017 ident: 10.1016/j.measurement.2021.110370_b0255 article-title: Kinetic energy transfer between first proper orthogonal decomposition modes in a mixing tank publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201600674 – volume: 18 start-page: 6660 issue: 16 year: 2018 ident: 10.1016/j.measurement.2021.110370_b0090 article-title: Multi-objective optimal sensor placement for low-pressure gas distribution networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2850847 – volume: 9 start-page: 235 issue: Feb year: 2008 ident: 10.1016/j.measurement.2021.110370_b0135 article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies publication-title: Journal of Machine Learning Research – start-page: 626 year: 2012 ident: 10.1016/j.measurement.2021.110370_b0005 – start-page: 1 year: 1999 ident: 10.1016/j.measurement.2021.110370_b0240 – volume: 26 start-page: e2274 issue: 1 year: 2019 ident: 10.1016/j.measurement.2021.110370_b0195 article-title: Genetic algorithm based optimal sensor placement for L1-regularized damage detection publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2274 – ident: 10.1016/j.measurement.2021.110370_b0285 – volume: 12 start-page: 199 issue: 2 year: 2003 ident: 10.1016/j.measurement.2021.110370_b0290 article-title: Distributing points on the sphere publication-title: I. Experimental Mathematics doi: 10.1080/10586458.2003.10504492 – ident: 10.1016/j.measurement.2021.110370_b0130 – volume: 19 start-page: 1287 issue: 4 year: 2020 ident: 10.1016/j.measurement.2021.110370_b0095 article-title: Computational methodologies for optimal sensor placement in structural health monitoring: A review publication-title: Structural Health Monitoring doi: 10.1177/1475921719877579 – volume: 19 start-page: 761 issue: 6 year: 2015 ident: 10.1016/j.measurement.2021.110370_b0245 article-title: A knee point-driven evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2378512 – volume: 22 start-page: 907 issue: 4 year: 2019 ident: 10.1016/j.measurement.2021.110370_b0150 article-title: Optimal wireless sensor network configuration for structural monitoring using automatic-learning firefly algorithm publication-title: Adv. Struct. Eng. doi: 10.1177/1369433218797074 – year: 1977 ident: 10.1016/j.measurement.2021.110370_b0235 – start-page: 273 year: 1995 ident: 10.1016/j.measurement.2021.110370_b0295 article-title: Bayesian experimental design: A review publication-title: Statistical Science – ident: 10.1016/j.measurement.2021.110370_b0080 – volume: 35 start-page: 1085 issue: 10 year: 2020 ident: 10.1016/j.measurement.2021.110370_b0200 article-title: Convex relaxation for efficient sensor layout optimization in large-scale structures subjected to moving loads publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12553 – volume: 146 start-page: 230 year: 2019 ident: 10.1016/j.measurement.2021.110370_b0115 article-title: Sensor layout optimization by integrating Bayesian approach to diagnose multi-station assembly processes publication-title: Measurement doi: 10.1016/j.measurement.2019.06.021 – volume: 9 start-page: 43 issue: 1 year: 2005 ident: 10.1016/j.measurement.2021.110370_b0170 article-title: A near-optimal sensor placement algorithm to achieve complete coverage-discrimination in sensor networks publication-title: IEEE Commun. Lett. – ident: 10.1016/j.measurement.2021.110370_b0010 doi: 10.1109/ISSNIP.2015.7106946 – volume: 1 start-page: 58 issue: 1 year: 2014 ident: 10.1016/j.measurement.2021.110370_b0035 article-title: An energy-aware trust derivation scheme with game theoretic approach in wireless sensor networks for IoT applications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2014.2314132 – volume: 509 start-page: 488 year: 2020 ident: 10.1016/j.measurement.2021.110370_b0120 article-title: Modified NSGA-III for sensor placement in water distribution system publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.06.055 – start-page: 4479 year: 2015 ident: 10.1016/j.measurement.2021.110370_b0160 – volume: 89 start-page: 72 year: 2017 ident: 10.1016/j.measurement.2021.110370_b0045 article-title: An efficient authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2016.12.008 – volume: 45 start-page: 101183 year: 2021 ident: 10.1016/j.measurement.2021.110370_b0145 article-title: A synchronous placement and size-based multi-objective optimization method for heat dissipation design on antenna module of space solar power satellite publication-title: Sustainable Energy Technol. Assess. doi: 10.1016/j.seta.2021.101183 – start-page: 145 year: 2011 ident: 10.1016/j.measurement.2021.110370_b0210 – ident: 10.1016/j.measurement.2021.110370_b0275 – volume: 91 start-page: 509 year: 2016 ident: 10.1016/j.measurement.2021.110370_b0085 article-title: Data correlation analysis for optimal sensor placement using a bond energy algorithm publication-title: Measurement doi: 10.1016/j.measurement.2016.05.089 – volume: 6 start-page: 67 issue: 1 year: 2012 ident: 10.1016/j.measurement.2021.110370_b0020 article-title: Wireless sensor networks for traffic management and road safety publication-title: IET Intel. Transport Syst. doi: 10.1049/iet-its.2010.0129 – volume: 151 start-page: 107363 year: 2021 ident: 10.1016/j.measurement.2021.110370_b0060 article-title: An adaptive sensor placement algorithm for structural health monitoring based on multi-objective iterative optimization using weight factor updating publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2020.107363 – volume: 149 start-page: 831 issue: 3 year: 1999 ident: 10.1016/j.measurement.2021.110370_b0300 article-title: Menger curvature and rectifiability publication-title: Ann. Math. doi: 10.2307/121074 |
| SSID | ssj0006396 |
| Score | 2.436354 |
| Snippet | •We devise a multi-objective optimization (MOO) for sensor placement.•Our MOO integrates reduced order model and lazy greedy combinatorial approach.•We develop... We develop a novel sensor placement method that maximizes monitoring performance while minimizing deployment cost. Our method integrates a reduced order model... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 110370 |
| SubjectTerms | Algorithms Branch and bound Combinatorial analysis Configuration management Gaussian process Lazy greedy algorithm Multi-objective combinatorial optimization Multiple objective analysis Normal distribution Optimization Pareto optimization Pareto optimum Placement Proper Orthogonal Decomposition Reduced order models Sensor placement Sensors State estimation |
| Title | Multi-objective optimization for sensor placement: An integrated combinatorial approach with reduced order model and Gaussian process |
| URI | https://dx.doi.org/10.1016/j.measurement.2021.110370 https://www.proquest.com/docview/2624686434 |
| Volume | 187 |
| WOSCitedRecordID | wos000749736000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fi9QwEA_Lnoo-iJ6Kp6dE8E16tEnaJuLLIuc_8BDuhPWppEnL7XLbLtvd4_wAfik_nZOkf-LiwYr40pbSNG3n12RmMvMbhF5KriOe5DJQrEwDJnge5HmZB0TCbJELKjWVtthEenLCp1PxZTT62eXCXF6kVcWvrsTyv4oazoGwTersX4i7vymcgGMQOmxB7LDdSfA2pTao87kbyl7VMCgs2mxLG1TYgOUKOxuN5fkGe-IIm-cGBrMxx40_vaMddz7bleF6hWssZ6crpGMXIN7LTWMTMpcu9cDXej8PjkjrgvDoKobgzc4r6V9s8xENN6gfLjDd2BWVc1l_n_XhQxvr8v0mq_lsgGq9gEc8hSnw3Fvs8NwchGy5Ofr8myHYqbG0sTQwSoibzdwQzlMasMgWaffG-PSP84VzXcyPFsOrHUHvkcmOoK6iyRYd96np03RJDDNaYjgT9kgaCz5Ge5OPx9NPvR4Aul_iPHzuGW-hF0N04TUdXqcdbekJVvk5u4futlYLnji03UejotpHdzwuy31008YSq-YB-rGFQOwjEAMCsUMg7hH4Gk8qPOAP_4Y_3OEPG_zhFn_Y4g9b_GHAH-7wh1v8PURf3x2fvf0QtNU-AkWZWAeqZKlOuKRaxjqNIylSQSKlwrQoQ1APRBKpiMWahkLDh9dxHJOCak5lHMsy5_QRGld1VTxGmITarHhTUQjFaFiIPGdJAZY-L6hQRB8g3n3lTLVU-KYiy0XWxTzOM09AmRFQ5gR0gEjfdOn4YHZp9KYTZdYqtk5hzQCHuzQ_7MSftT9ok5GEsISDPcGe_Nvdn6Lbw_92iMbr1aZ4hm6oy_WsWT1vQf0LqYHibw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+for+sensor+placement%3A+An+integrated+combinatorial+approach+with+reduced+order+model+and+Gaussian+process&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Xu%2C+Zhaoyi&rft.au=Guo%2C+Yanjie&rft.au=Homer+Saleh%2C+Joseph&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=187&rft_id=info:doi/10.1016%2Fj.measurement.2021.110370&rft.externalDocID=S0263224121012641 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |