Multi-objective optimization for sensor placement: An integrated combinatorial approach with reduced order model and Gaussian process

•We devise a multi-objective optimization (MOO) for sensor placement.•Our MOO integrates reduced order model and lazy greedy combinatorial approach.•We develop branch and bound exact method to validate the Pareto frontier.•We validate our method by a temperature sensor placement example. We develop...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Measurement : journal of the International Measurement Confederation Ročník 187; s. 110370
Hlavní autoři: Xu, Zhaoyi, Guo, Yanjie, Homer Saleh, Joseph
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Elsevier Ltd 01.01.2022
Elsevier Science Ltd
Témata:
ISSN:0263-2241, 1873-412X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We devise a multi-objective optimization (MOO) for sensor placement.•Our MOO integrates reduced order model and lazy greedy combinatorial approach.•We develop branch and bound exact method to validate the Pareto frontier.•We validate our method by a temperature sensor placement example. We develop a novel sensor placement method that maximizes monitoring performance while minimizing deployment cost. Our method integrates a reduced order model and multi-objective combinatorial optimization. We first decompose the spatio-temporal state field to be monitored by proper orthogonal decomposition (POD), and we use the Gaussian Process to model the uncertainty in each POD mode. Next, we develop a lazy greedy (LG)-∊-constraint optimization to derive the Pareto-optimal sensor configurations. We further design a branch and bound algorithm to calculate the global optimum and validate the correctness of select configurations on the LG-derived Pareto frontier. We evaluate and benchmark our algorithm in computational experiments based on the temperature dataset of the Berkeley Intel Lab. The computational results demonstrate that our algorithm places sensors at locations of large magnitude in the POD modes, and that our method achieves better state estimation accuracy and smaller reconstruction errors compared with alternative methods.
AbstractList We develop a novel sensor placement method that maximizes monitoring performance while minimizing deployment cost. Our method integrates a reduced order model and multi-objective combinatorial optimization. We first decompose the spatio-temporal state field to be monitored by proper orthogonal decomposition (POD), and we use the Gaussian Process to model the uncertainty in each POD mode. Next, we develop a lazy greedy (LG)∊ -constraint optimization to derive the Pareto-optimal sensor configurations. We further design a branch and bound algorithm to calculate the global optimum and validate the correctness of select configurations on the LG-derived Pareto frontier. We evaluate and benchmark our algorithm in computational experiments based on the temperature dataset of the Berkeley Intel Lab. The computational results demonstrate that our algorithm places sensors at locations of large magnitude in the POD modes, and that our method achieves better state estimation accuracy and smaller reconstruction errors compared with alternative methods.
•We devise a multi-objective optimization (MOO) for sensor placement.•Our MOO integrates reduced order model and lazy greedy combinatorial approach.•We develop branch and bound exact method to validate the Pareto frontier.•We validate our method by a temperature sensor placement example. We develop a novel sensor placement method that maximizes monitoring performance while minimizing deployment cost. Our method integrates a reduced order model and multi-objective combinatorial optimization. We first decompose the spatio-temporal state field to be monitored by proper orthogonal decomposition (POD), and we use the Gaussian Process to model the uncertainty in each POD mode. Next, we develop a lazy greedy (LG)-∊-constraint optimization to derive the Pareto-optimal sensor configurations. We further design a branch and bound algorithm to calculate the global optimum and validate the correctness of select configurations on the LG-derived Pareto frontier. We evaluate and benchmark our algorithm in computational experiments based on the temperature dataset of the Berkeley Intel Lab. The computational results demonstrate that our algorithm places sensors at locations of large magnitude in the POD modes, and that our method achieves better state estimation accuracy and smaller reconstruction errors compared with alternative methods.
ArticleNumber 110370
Author Homer Saleh, Joseph
Xu, Zhaoyi
Guo, Yanjie
Author_xml – sequence: 1
  givenname: Zhaoyi
  surname: Xu
  fullname: Xu, Zhaoyi
  email: zxu328@gatech.edu
– sequence: 2
  givenname: Yanjie
  surname: Guo
  fullname: Guo, Yanjie
– sequence: 3
  givenname: Joseph
  surname: Homer Saleh
  fullname: Homer Saleh, Joseph
BookMark eNqNkU1P3DAURa2KSh1o_4OrrjP4I3GSbio0agEJxKaVurPe2C_FUWKntgNq9_3fGIZFxYrV3Zx3r3TeMTnywSMhHznbcsbV6bidEdIacUaft4IJvuWcyZa9IRvetbKqufh5RDZMKFkJUfN35DilkTGmZK825N_1OmVXhf2IJrs7pGHJbnZ_Ibvg6RAiTehTiWUC8zTymZ556nzGXxEyWmrCvHcecogOJgrLEgOYW3rv8i2NaFdTmBAtRjoHi4Xwlp7DmpIDTwtsMKX35O0AU8IPz3lCfnz7-n13UV3dnF_uzq4qI-s-V2aoW6s6kBYa2zYc-rYX3BjW4sAQTK-44XVjJestF8o2TSNQ2k5C08Cw7-QJ-XToLbu_V0xZj2GNvkxqoUStOlXLulBfDpSJIaWIgzYuPwnJEdykOdOP7vWo_3OvH93rg_vS0L9oWKKbIf551e3ucItFxJ3DqJNx6ItGF8uPtA3uFS0PN-asTA
CitedBy_id crossref_primary_10_3390_jmse12071220
crossref_primary_10_3390_s24165393
crossref_primary_10_1109_ACCESS_2025_3541930
crossref_primary_10_1109_JIOT_2023_3303124
crossref_primary_10_1016_j_jobe_2024_111540
crossref_primary_10_3390_app15137463
crossref_primary_10_1007_s11356_023_26075_5
crossref_primary_10_1016_j_jprocont_2025_103493
crossref_primary_10_1177_1748006X221114735
crossref_primary_10_32604_cmc_2025_059184
crossref_primary_10_3390_s25092661
crossref_primary_10_1016_j_ress_2023_109336
crossref_primary_10_1016_j_ymssp_2023_110319
crossref_primary_10_1016_j_ymssp_2024_111523
crossref_primary_10_1002_tal_2125
crossref_primary_10_1016_j_ast_2025_110685
crossref_primary_10_1016_j_probengmech_2023_103534
Cites_doi 10.1109/JSEN.2018.2887044
10.1016/j.trc.2012.06.008
10.3390/s20113113
10.1146/annurev.fl.25.010193.002543
10.1002/stc.1707
10.1504/IJAACS.2013.052925
10.1016/j.jmp.2018.03.001
10.1007/BF01442131
10.1016/j.dam.2012.05.025
10.1177/1475921719825601
10.1016/j.measurement.2014.05.028
10.1016/j.cma.2020.113042
10.1016/j.compfluid.2017.10.002
10.1002/9780470061626.shm086
10.1002/stc.2605
10.1016/j.jnca.2017.05.004
10.1016/j.ymssp.2021.107774
10.18517/ijaseit.7.1.1514
10.1061/(ASCE)AS.1943-5525.0001226
10.1002/ceat.201600674
10.1109/JSEN.2018.2850847
10.1002/stc.2274
10.1080/10586458.2003.10504492
10.1177/1475921719877579
10.1109/TEVC.2014.2378512
10.1177/1369433218797074
10.1111/mice.12553
10.1016/j.measurement.2019.06.021
10.1109/ISSNIP.2015.7106946
10.1109/JIOT.2014.2314132
10.1016/j.ins.2018.06.055
10.1016/j.jnca.2016.12.008
10.1016/j.seta.2021.101183
10.1016/j.measurement.2016.05.089
10.1049/iet-its.2010.0129
10.1016/j.ymssp.2020.107363
10.2307/121074
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Jan 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jan 2022
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2021.110370
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2021_110370
S0263224121012641
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
ID FETCH-LOGICAL-c349t-cf47d68a3da5d751a97921cc07ef0eac961c145d309d126d5552e3d83a55afb83
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000749736000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Wed Aug 13 11:32:35 EDT 2025
Sat Nov 29 07:22:05 EST 2025
Tue Nov 18 20:53:53 EST 2025
Fri Feb 23 02:41:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sensor placement
Proper orthogonal decomposition
Lazy greedy algorithm
Branch and bound
Multi-objective combinatorial optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-cf47d68a3da5d751a97921cc07ef0eac961c145d309d126d5552e3d83a55afb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2624686434
PQPubID 2047460
ParticipantIDs proquest_journals_2624686434
crossref_citationtrail_10_1016_j_measurement_2021_110370
crossref_primary_10_1016_j_measurement_2021_110370
elsevier_sciencedirect_doi_10_1016_j_measurement_2021_110370
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Clark, Askham, Brunton, Nathan Kutz (b0190) 2019; 19
Williams, Rasmussen (b0270) 2006; Vol. 2, No. 3
Ostachowicz, Soman, Malinowski (b0070) 2019; 18
Serna, M.Á., Sreenan, C.J. and Fedor, S., 2015, April. A visual programming framework for wireless sensor networks in smart home applications. In
Ma, Liang, Zheng (b0225) 2017; 93
Pascale, Nicoli, Deflorio, Dalla Chiara, Spagnolini (b0020) 2012; 6
Lu, Wen, Teng, Li, Li (b0085) 2016; 91
Wu, Xu, Kumari, Li, Shen, Choo, Wazid, Das (b0045) 2017; 89
Minoux (b0280) 1978
Xing, Tan, Liu, Wang, Jia, Yi (b0055) 2009
Castello, Chen, Fan, Davari (b0015) 2013; 6
Chatterjee (b0260) 2000
(Doctoral dissertation, PhD thesis, Carnegie Mellon University.(Section 5.7)).
Lin, Chiu (b0170) 2005; 9
Optimizing sensing
He, Jia, Liu, Zhao (b0115) 2019; 146
Berkooz, Holmes, Lumley (b0250) 1993; 25
USA: Intel Corporation, 2004 [2004-06-08]. http://berkeley, intel-research, net/labdata, html.
Bottero, Dalla Chiara, Deflorio (b0025) 2013; 26
Yang (b0065) 2021; 158
Hu, Dai, Yan, Gong, Liu, Wang (b0120) 2020; 509
2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)
Zhu, Wang, Chen, Liu, Qin (b0040) 2010
Abidin, Din, Radzi, Rizman (b0075) 2017; 7
Gabelle, Morchain, Liné (b0255) 2017; 40
Islam, Shen, Wang (b0005) 2012
Liu, Sun, Li, Qian, Zhou (b0165) 2016; 36
Censor (b0220) 1977; 4
Duan, Gao, Yang, Foh, Chen (b0035) 2014; 1
Barthorpe, R.J. and Worden, K., 2009. Sensor placement optimization.
Du, D.Z. and Pardalos, P.M. eds., 2013.
Błachowski, Świercz, Ostrowski, Tauzowski, Olaszek, Jankowski (b0200) 2020; 35
Zhang, Tian, Jin (b0245) 2015; 19
Madden, S., 2003. Intel Berkeley research lab data.
Yang, Liang, Zhang (b0140) 2020; 366
Katanforoush, Shahshahani (b0290) 2003; 12
Brunton, B.W., Brunton, S.L., Proctor, J.L. and Kutz, J.N., 2013. Optimal sensor placement and enhanced sparsity for classification.
Bhattacharyya, Beck (b0205) 2020; 27
Ma, Liang, Zheng (b0230) 2016
Pike-Burke, C., 2019. Multi-objective optimization.
Krause, Singh, Guestrin (b0135) 2008; 9
Yang (b0060) 2021; 151
Zan, Gupta, Wang, Dauwels, Ukil (b0090) 2018; 18
Hou, Xia, Xia, Zhou (b0195) 2019; 26
D’Antona, Seifnaraghi (b0110) 2014; 56
Zhou, Xie, Yi, Li (b0150) 2019; 22
Damianou, Lawrence (b0215) 2013
Deshpande, Guestrin, Madden, Hellerstein, Hong (b0265) 2004
Yang, Hou, Chang (b0145) 2021; 45
Léger (b0300) 1999; 149
Wen, Pan, Le (b0030) 2007
(Vol. 4). Springer Science & Business Media.
Clausen (b0240) 1999
Semaan (b0155) 2017; 159
Ullo, Sinha (b0050) 2020; 20
Guiașu (b0235) 1977
Krause, A., 2008.
Zhou, Yi, Xie, Li, Xu (b0100) 2021; 34
Kolmogorov (b0305) 2012; 160
(pp. 1-6). IEEE.
Padula, S.L. and Kincaid, R.K., 1999. Optimization strategies for sensor and actuator placement.
Kekatos, Giannakis (b0210) 2011
Kasper, Mathelin, Abou-Kandil (b0160) 2015
Zhou, Yi, Zhang, Li (b0105) 2015; 22
Chaloner, Verdinelli (b0295) 1995
Tan, Zhang (b0095) 2020; 19
arXiv preprint arXiv:1310.4217.
Minimax and applications
Encyclopedia of structural health monitoring.
Schulz, Speekenbrink, Krause (b0180) 2018; 85
Tan (10.1016/j.measurement.2021.110370_b0095) 2020; 19
Schulz (10.1016/j.measurement.2021.110370_b0180) 2018; 85
Damianou (10.1016/j.measurement.2021.110370_b0215) 2013
Bottero (10.1016/j.measurement.2021.110370_b0025) 2013; 26
Kekatos (10.1016/j.measurement.2021.110370_b0210) 2011
Ullo (10.1016/j.measurement.2021.110370_b0050) 2020; 20
Gabelle (10.1016/j.measurement.2021.110370_b0255) 2017; 40
Kasper (10.1016/j.measurement.2021.110370_b0160) 2015
Ma (10.1016/j.measurement.2021.110370_b0225) 2017; 93
Duan (10.1016/j.measurement.2021.110370_b0035) 2014; 1
Léger (10.1016/j.measurement.2021.110370_b0300) 1999; 149
Zan (10.1016/j.measurement.2021.110370_b0090) 2018; 18
10.1016/j.measurement.2021.110370_b0285
Pascale (10.1016/j.measurement.2021.110370_b0020) 2012; 6
Błachowski (10.1016/j.measurement.2021.110370_b0200) 2020; 35
Bhattacharyya (10.1016/j.measurement.2021.110370_b0205) 2020; 27
10.1016/j.measurement.2021.110370_b0080
Zhu (10.1016/j.measurement.2021.110370_b0040) 2010
Katanforoush (10.1016/j.measurement.2021.110370_b0290) 2003; 12
10.1016/j.measurement.2021.110370_b0125
Chaloner (10.1016/j.measurement.2021.110370_b0295) 1995
Xing (10.1016/j.measurement.2021.110370_b0055) 2009
Semaan (10.1016/j.measurement.2021.110370_b0155) 2017; 159
Ma (10.1016/j.measurement.2021.110370_b0230) 2016
Berkooz (10.1016/j.measurement.2021.110370_b0250) 1993; 25
Deshpande (10.1016/j.measurement.2021.110370_b0265) 2004
Islam (10.1016/j.measurement.2021.110370_b0005) 2012
10.1016/j.measurement.2021.110370_b0175
10.1016/j.measurement.2021.110370_b0010
10.1016/j.measurement.2021.110370_b0130
Wu (10.1016/j.measurement.2021.110370_b0045) 2017; 89
Castello (10.1016/j.measurement.2021.110370_b0015) 2013; 6
Chatterjee (10.1016/j.measurement.2021.110370_b0260) 2000
Hu (10.1016/j.measurement.2021.110370_b0120) 2020; 509
Williams (10.1016/j.measurement.2021.110370_b0270) 2006; Vol. 2, No. 3
Zhou (10.1016/j.measurement.2021.110370_b0100) 2021; 34
Liu (10.1016/j.measurement.2021.110370_b0165) 2016; 36
Guiașu (10.1016/j.measurement.2021.110370_b0235) 1977
Zhou (10.1016/j.measurement.2021.110370_b0150) 2019; 22
He (10.1016/j.measurement.2021.110370_b0115) 2019; 146
Yang (10.1016/j.measurement.2021.110370_b0140) 2020; 366
Wen (10.1016/j.measurement.2021.110370_b0030) 2007
10.1016/j.measurement.2021.110370_b0185
Kolmogorov (10.1016/j.measurement.2021.110370_b0305) 2012; 160
Yang (10.1016/j.measurement.2021.110370_b0145) 2021; 45
Yang (10.1016/j.measurement.2021.110370_b0060) 2021; 151
Ostachowicz (10.1016/j.measurement.2021.110370_b0070) 2019; 18
Minoux (10.1016/j.measurement.2021.110370_b0280) 1978
D’Antona (10.1016/j.measurement.2021.110370_b0110) 2014; 56
Abidin (10.1016/j.measurement.2021.110370_b0075) 2017; 7
Krause (10.1016/j.measurement.2021.110370_b0135) 2008; 9
Censor (10.1016/j.measurement.2021.110370_b0220) 1977; 4
Zhou (10.1016/j.measurement.2021.110370_b0105) 2015; 22
Zhang (10.1016/j.measurement.2021.110370_b0245) 2015; 19
Lu (10.1016/j.measurement.2021.110370_b0085) 2016; 91
Clark (10.1016/j.measurement.2021.110370_b0190) 2019; 19
Yang (10.1016/j.measurement.2021.110370_b0065) 2021; 158
10.1016/j.measurement.2021.110370_b0275
Lin (10.1016/j.measurement.2021.110370_b0170) 2005; 9
Clausen (10.1016/j.measurement.2021.110370_b0240) 1999
Hou (10.1016/j.measurement.2021.110370_b0195) 2019; 26
References_xml – start-page: 626
  year: 2012
  end-page: 633
  ident: b0005
  publication-title: May. Security and privacy considerations for wireless sensor networks in smart home environments
– start-page: 145
  year: 2011
  end-page: 148
  ident: b0210
  publication-title: December. A convex relaxation approach to optimal placement of phasor measurement units
– reference: Madden, S., 2003. Intel Berkeley research lab data.
– volume: 26
  start-page: 99
  year: 2013
  end-page: 124
  ident: b0025
  article-title: Wireless sensor networks for traffic monitoring in a logistic centre
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 151
  start-page: 107363
  year: 2021
  ident: b0060
  article-title: An adaptive sensor placement algorithm for structural health monitoring based on multi-objective iterative optimization using weight factor updating
  publication-title: Mech. Syst. Sig. Process.
– reference: Padula, S.L. and Kincaid, R.K., 1999. Optimization strategies for sensor and actuator placement.
– volume: 27
  year: 2020
  ident: b0205
  article-title: Exploiting convexification for Bayesian optimal sensor placement by maximization of mutual information
  publication-title: Structural Control and Health Monitoring
– volume: 93
  start-page: 76
  year: 2017
  end-page: 90
  ident: b0225
  article-title: Delay constrained relay node placement in two-tiered wireless sensor networks: A set-covering-based algorithm
  publication-title: Journal of Network and Computer Applications
– volume: 159
  start-page: 167
  year: 2017
  end-page: 176
  ident: b0155
  article-title: Optimal sensor placement using machine learning
  publication-title: Comput. Fluids
– volume: 22
  start-page: 907
  year: 2019
  end-page: 918
  ident: b0150
  article-title: Optimal wireless sensor network configuration for structural monitoring using automatic-learning firefly algorithm
  publication-title: Adv. Struct. Eng.
– volume: 9
  start-page: 235
  year: 2008
  end-page: 284
  ident: b0135
  article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
  publication-title: Journal of Machine Learning Research
– volume: 6
  start-page: 99
  year: 2013
  end-page: 114
  ident: b0015
  article-title: Context aware wireless sensor networks for smart home monitoring
  publication-title: International Journal of Autonomous and Adaptive Communications Systems 10
– start-page: 347
  year: 2010
  end-page: 352
  ident: b0040
  publication-title: December. Iot gateway: Bridgingwireless sensor networks into internet of things
– volume: 85
  start-page: 1
  year: 2018
  end-page: 16
  ident: b0180
  article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions
  publication-title: J. Math. Psychol.
– reference: Pike-Burke, C., 2019. Multi-objective optimization.
– volume: 89
  start-page: 72
  year: 2017
  end-page: 85
  ident: b0045
  article-title: An efficient authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment
  publication-title: Journal of Network and Computer Applications
– volume: 4
  start-page: 41
  year: 1977
  end-page: 59
  ident: b0220
  article-title: Pareto optimality in multiobjective problems
  publication-title: Appl. Math. Optim.
– volume: 18
  start-page: 963
  year: 2019
  end-page: 988
  ident: b0070
  article-title: Optimization of sensor placement for structural health monitoring: A review
  publication-title: Structural Health Monitoring
– reference: Serna, M.Á., Sreenan, C.J. and Fedor, S., 2015, April. A visual programming framework for wireless sensor networks in smart home applications. In
– reference: Encyclopedia of structural health monitoring.
– reference: Optimizing sensing
– start-page: 808
  year: 2000
  end-page: 817
  ident: b0260
  article-title: An introduction to the proper orthogonal decomposition
  publication-title: Curr. Sci.
– volume: 34
  start-page: 04020112
  year: 2021
  ident: b0100
  article-title: Optimal Wireless Sensor Placement in Structural Health Monitoring Emphasizing Information Effectiveness and Network Performance
  publication-title: J. Aerosp. Eng.
– volume: 56
  start-page: 58
  year: 2014
  end-page: 69
  ident: b0110
  article-title: Analysis of the sensor placement for optimal temperature distribution reconstruction
  publication-title: Measurement
– volume: 7
  start-page: 190
  year: 2017
  end-page: 197
  ident: b0075
  article-title: A review on sensor node placement techniques in wireless sensor networks
  publication-title: International Journal on Advanced Science, Engineering and Information Technology
– volume: 158
  start-page: 107774
  year: 2021
  ident: b0065
  article-title: A novel uncertainty-oriented regularization method for load identification
  publication-title: Mech. Syst. Sig. Process.
– volume: 509
  start-page: 488
  year: 2020
  end-page: 500
  ident: b0120
  article-title: Modified NSGA-III for sensor placement in water distribution system
  publication-title: Inf. Sci.
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: b0245
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 36
  start-page: 421
  year: 2016
  end-page: 434
  ident: b0165
  article-title: Machine learning for noise sensor placement and full-chip voltage emergency detection
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
– volume: 26
  start-page: e2274
  year: 2019
  ident: b0195
  article-title: Genetic algorithm based optimal sensor placement for L1-regularized damage detection
  publication-title: Structural Control and Health Monitoring
– start-page: 273
  year: 1995
  end-page: 304
  ident: b0295
  article-title: Bayesian experimental design: A review
  publication-title: Statistical Science
– volume: 6
  start-page: 67
  year: 2012
  end-page: 77
  ident: b0020
  article-title: Wireless sensor networks for traffic management and road safety
  publication-title: IET Intel. Transport Syst.
– volume: 19
  start-page: 2642
  year: 2019
  end-page: 2656
  ident: b0190
  article-title: Greedy sensor placement with cost constraints
  publication-title: IEEE Sens. J.
– volume: 25
  start-page: 539
  year: 1993
  end-page: 575
  ident: b0250
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 35
  start-page: 1085
  year: 2020
  end-page: 1100
  ident: b0200
  article-title: Convex relaxation for efficient sensor layout optimization in large-scale structures subjected to moving loads
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– reference: 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)
– reference: Minimax and applications
– start-page: 588
  year: 2004
  end-page: 599
  ident: b0265
  article-title: August. Model-driven data acquisition in sensor networks
  publication-title: In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30
– volume: 366
  start-page: 113042
  year: 2020
  ident: b0140
  article-title: Strategy for sensor number determination and placement optimization with incomplete information based on interval possibility model and clustering avoidance distribution index
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 4479
  year: 2015
  end-page: 4484
  ident: b0160
  publication-title: July. A machine learning approach for constrained sensor placement
– volume: 9
  start-page: 43
  year: 2005
  end-page: 45
  ident: b0170
  article-title: A near-optimal sensor placement algorithm to achieve complete coverage-discrimination in sensor networks
  publication-title: IEEE Commun. Lett.
– volume: 40
  start-page: 927
  year: 2017
  end-page: 937
  ident: b0255
  article-title: Kinetic energy transfer between first proper orthogonal decomposition modes in a mixing tank
  publication-title: Chem. Eng. Technol.
– reference: Du, D.Z. and Pardalos, P.M. eds., 2013.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b0230
  publication-title: May. Set-covering-based algorithm for delay constrained relay node placement in wireless sensor networks
– volume: 146
  start-page: 230
  year: 2019
  end-page: 240
  ident: b0115
  article-title: Sensor layout optimization by integrating Bayesian approach to diagnose multi-station assembly processes
  publication-title: Measurement
– volume: 22
  start-page: 648
  year: 2015
  end-page: 666
  ident: b0105
  article-title: Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm
  publication-title: Structural Control and Health Monitoring
– reference: USA: Intel Corporation, 2004 [2004-06-08]. http://berkeley, intel-research, net/labdata, html.
– volume: 149
  start-page: 831
  year: 1999
  end-page: 869
  ident: b0300
  article-title: Menger curvature and rectifiability
  publication-title: Ann. Math.
– start-page: 2079
  year: 2007
  end-page: 2084
  ident: b0030
  article-title: Survey on application of wireless sensor networks for traffic monitoring
  publication-title: In International Conference on Transportation Engineering 2007
– volume: 160
  start-page: 2246
  year: 2012
  end-page: 2258
  ident: b0305
  article-title: Minimizing a sum of submodular functions
  publication-title: Discrete Appl. Math.
– reference: Krause, A., 2008.
– reference: Barthorpe, R.J. and Worden, K., 2009. Sensor placement optimization.
– volume: 20
  start-page: 3113
  year: 2020
  ident: b0050
  article-title: Advances in Smart Environment Monitoring Systems Using IoT and Sensors
  publication-title: Sensors
– year: 1977
  ident: b0235
  article-title: Information theory with new applications
– volume: 18
  start-page: 6660
  year: 2018
  end-page: 6668
  ident: b0090
  article-title: Multi-objective optimal sensor placement for low-pressure gas distribution networks
  publication-title: IEEE Sens. J.
– volume: 45
  start-page: 101183
  year: 2021
  ident: b0145
  article-title: A synchronous placement and size-based multi-objective optimization method for heat dissipation design on antenna module of space solar power satellite
  publication-title: Sustainable Energy Technol. Assess.
– reference: Brunton, B.W., Brunton, S.L., Proctor, J.L. and Kutz, J.N., 2013. Optimal sensor placement and enhanced sparsity for classification.
– reference: (Vol. 4). Springer Science & Business Media.
– reference: (Doctoral dissertation, PhD thesis, Carnegie Mellon University.(Section 5.7)).
– volume: 19
  start-page: 1287
  year: 2020
  end-page: 1308
  ident: b0095
  article-title: Computational methodologies for optimal sensor placement in structural health monitoring: A review
  publication-title: Structural Health Monitoring
– volume: 91
  start-page: 509
  year: 2016
  end-page: 518
  ident: b0085
  article-title: Data correlation analysis for optimal sensor placement using a bond energy algorithm
  publication-title: Measurement
– reference: arXiv preprint arXiv:1310.4217.
– start-page: 207
  year: 2013
  end-page: 215
  ident: b0215
  article-title: April. Deep gaussian processes
  publication-title: In Artificial Intelligence and Statistics
– reference: (pp. 1-6). IEEE.
– volume: Vol. 2, No. 3
  start-page: p. 4).
  year: 2006
  ident: b0270
  publication-title: Gaussian processes for machine learning
– start-page: 234
  year: 1978
  end-page: 243
  ident: b0280
  publication-title: Lecture Notes in Control and Information SciencesOptimization Techniques
– start-page: 1
  year: 1999
  end-page: 30
  ident: b0240
  article-title: Branch and bound algorithms-principles and examples
– volume: 1
  start-page: 58
  year: 2014
  end-page: 69
  ident: b0035
  article-title: An energy-aware trust derivation scheme with game theoretic approach in wireless sensor networks for IoT applications
  publication-title: IEEE Internet Things J.
– volume: 12
  start-page: 199
  year: 2003
  end-page: 209
  ident: b0290
  article-title: Distributing points on the sphere
  publication-title: I. Experimental Mathematics
– start-page: 157
  year: 2009
  end-page: 168
  ident: b0055
  article-title: September. Data fusion improves the coverage of wireless sensor networks
  publication-title: In Proceedings of the 15th annual international conference on Mobile computing and networking
– volume: 19
  start-page: 2642
  issue: 7
  year: 2019
  ident: 10.1016/j.measurement.2021.110370_b0190
  article-title: Greedy sensor placement with cost constraints
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2887044
– volume: 26
  start-page: 99
  year: 2013
  ident: 10.1016/j.measurement.2021.110370_b0025
  article-title: Wireless sensor networks for traffic monitoring in a logistic centre
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2012.06.008
– volume: 20
  start-page: 3113
  issue: 11
  year: 2020
  ident: 10.1016/j.measurement.2021.110370_b0050
  article-title: Advances in Smart Environment Monitoring Systems Using IoT and Sensors
  publication-title: Sensors
  doi: 10.3390/s20113113
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  ident: 10.1016/j.measurement.2021.110370_b0250
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.25.010193.002543
– volume: 22
  start-page: 648
  issue: 4
  year: 2015
  ident: 10.1016/j.measurement.2021.110370_b0105
  article-title: Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.1707
– volume: 6
  start-page: 99
  issue: 2
  year: 2013
  ident: 10.1016/j.measurement.2021.110370_b0015
  article-title: Context aware wireless sensor networks for smart home monitoring
  publication-title: International Journal of Autonomous and Adaptive Communications Systems 10
  doi: 10.1504/IJAACS.2013.052925
– volume: 36
  start-page: 421
  issue: 3
  year: 2016
  ident: 10.1016/j.measurement.2021.110370_b0165
  article-title: Machine learning for noise sensor placement and full-chip voltage emergency detection
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
– start-page: 234
  year: 1978
  ident: 10.1016/j.measurement.2021.110370_b0280
– volume: 85
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2021.110370_b0180
  article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2018.03.001
– volume: 4
  start-page: 41
  issue: 1
  year: 1977
  ident: 10.1016/j.measurement.2021.110370_b0220
  article-title: Pareto optimality in multiobjective problems
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF01442131
– start-page: 207
  year: 2013
  ident: 10.1016/j.measurement.2021.110370_b0215
  article-title: April. Deep gaussian processes
– volume: Vol. 2, No. 3
  start-page: p. 4).
  year: 2006
  ident: 10.1016/j.measurement.2021.110370_b0270
  publication-title: Gaussian processes for machine learning
– volume: 160
  start-page: 2246
  issue: 15
  year: 2012
  ident: 10.1016/j.measurement.2021.110370_b0305
  article-title: Minimizing a sum of submodular functions
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2012.05.025
– start-page: 2079
  year: 2007
  ident: 10.1016/j.measurement.2021.110370_b0030
  article-title: Survey on application of wireless sensor networks for traffic monitoring
– volume: 18
  start-page: 963
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2021.110370_b0070
  article-title: Optimization of sensor placement for structural health monitoring: A review
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921719825601
– volume: 56
  start-page: 58
  year: 2014
  ident: 10.1016/j.measurement.2021.110370_b0110
  article-title: Analysis of the sensor placement for optimal temperature distribution reconstruction
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.05.028
– volume: 366
  start-page: 113042
  year: 2020
  ident: 10.1016/j.measurement.2021.110370_b0140
  article-title: Strategy for sensor number determination and placement optimization with incomplete information based on interval possibility model and clustering avoidance distribution index
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113042
– volume: 159
  start-page: 167
  year: 2017
  ident: 10.1016/j.measurement.2021.110370_b0155
  article-title: Optimal sensor placement using machine learning
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2017.10.002
– start-page: 808
  year: 2000
  ident: 10.1016/j.measurement.2021.110370_b0260
  article-title: An introduction to the proper orthogonal decomposition
  publication-title: Curr. Sci.
– ident: 10.1016/j.measurement.2021.110370_b0125
  doi: 10.1002/9780470061626.shm086
– volume: 27
  issue: 10
  year: 2020
  ident: 10.1016/j.measurement.2021.110370_b0205
  article-title: Exploiting convexification for Bayesian optimal sensor placement by maximization of mutual information
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2605
– ident: 10.1016/j.measurement.2021.110370_b0185
– start-page: 1
  year: 2016
  ident: 10.1016/j.measurement.2021.110370_b0230
– start-page: 588
  year: 2004
  ident: 10.1016/j.measurement.2021.110370_b0265
  article-title: August. Model-driven data acquisition in sensor networks
– ident: 10.1016/j.measurement.2021.110370_b0175
– start-page: 157
  year: 2009
  ident: 10.1016/j.measurement.2021.110370_b0055
  article-title: September. Data fusion improves the coverage of wireless sensor networks
– start-page: 347
  year: 2010
  ident: 10.1016/j.measurement.2021.110370_b0040
– volume: 93
  start-page: 76
  year: 2017
  ident: 10.1016/j.measurement.2021.110370_b0225
  article-title: Delay constrained relay node placement in two-tiered wireless sensor networks: A set-covering-based algorithm
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2017.05.004
– volume: 158
  start-page: 107774
  year: 2021
  ident: 10.1016/j.measurement.2021.110370_b0065
  article-title: A novel uncertainty-oriented regularization method for load identification
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.107774
– volume: 7
  start-page: 190
  issue: 1
  year: 2017
  ident: 10.1016/j.measurement.2021.110370_b0075
  article-title: A review on sensor node placement techniques in wireless sensor networks
  publication-title: International Journal on Advanced Science, Engineering and Information Technology
  doi: 10.18517/ijaseit.7.1.1514
– volume: 34
  start-page: 04020112
  issue: 2
  year: 2021
  ident: 10.1016/j.measurement.2021.110370_b0100
  article-title: Optimal Wireless Sensor Placement in Structural Health Monitoring Emphasizing Information Effectiveness and Network Performance
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0001226
– volume: 40
  start-page: 927
  issue: 5
  year: 2017
  ident: 10.1016/j.measurement.2021.110370_b0255
  article-title: Kinetic energy transfer between first proper orthogonal decomposition modes in a mixing tank
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201600674
– volume: 18
  start-page: 6660
  issue: 16
  year: 2018
  ident: 10.1016/j.measurement.2021.110370_b0090
  article-title: Multi-objective optimal sensor placement for low-pressure gas distribution networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2850847
– volume: 9
  start-page: 235
  issue: Feb
  year: 2008
  ident: 10.1016/j.measurement.2021.110370_b0135
  article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
  publication-title: Journal of Machine Learning Research
– start-page: 626
  year: 2012
  ident: 10.1016/j.measurement.2021.110370_b0005
– start-page: 1
  year: 1999
  ident: 10.1016/j.measurement.2021.110370_b0240
– volume: 26
  start-page: e2274
  issue: 1
  year: 2019
  ident: 10.1016/j.measurement.2021.110370_b0195
  article-title: Genetic algorithm based optimal sensor placement for L1-regularized damage detection
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2274
– ident: 10.1016/j.measurement.2021.110370_b0285
– volume: 12
  start-page: 199
  issue: 2
  year: 2003
  ident: 10.1016/j.measurement.2021.110370_b0290
  article-title: Distributing points on the sphere
  publication-title: I. Experimental Mathematics
  doi: 10.1080/10586458.2003.10504492
– ident: 10.1016/j.measurement.2021.110370_b0130
– volume: 19
  start-page: 1287
  issue: 4
  year: 2020
  ident: 10.1016/j.measurement.2021.110370_b0095
  article-title: Computational methodologies for optimal sensor placement in structural health monitoring: A review
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921719877579
– volume: 19
  start-page: 761
  issue: 6
  year: 2015
  ident: 10.1016/j.measurement.2021.110370_b0245
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2378512
– volume: 22
  start-page: 907
  issue: 4
  year: 2019
  ident: 10.1016/j.measurement.2021.110370_b0150
  article-title: Optimal wireless sensor network configuration for structural monitoring using automatic-learning firefly algorithm
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433218797074
– year: 1977
  ident: 10.1016/j.measurement.2021.110370_b0235
– start-page: 273
  year: 1995
  ident: 10.1016/j.measurement.2021.110370_b0295
  article-title: Bayesian experimental design: A review
  publication-title: Statistical Science
– ident: 10.1016/j.measurement.2021.110370_b0080
– volume: 35
  start-page: 1085
  issue: 10
  year: 2020
  ident: 10.1016/j.measurement.2021.110370_b0200
  article-title: Convex relaxation for efficient sensor layout optimization in large-scale structures subjected to moving loads
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12553
– volume: 146
  start-page: 230
  year: 2019
  ident: 10.1016/j.measurement.2021.110370_b0115
  article-title: Sensor layout optimization by integrating Bayesian approach to diagnose multi-station assembly processes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.021
– volume: 9
  start-page: 43
  issue: 1
  year: 2005
  ident: 10.1016/j.measurement.2021.110370_b0170
  article-title: A near-optimal sensor placement algorithm to achieve complete coverage-discrimination in sensor networks
  publication-title: IEEE Commun. Lett.
– ident: 10.1016/j.measurement.2021.110370_b0010
  doi: 10.1109/ISSNIP.2015.7106946
– volume: 1
  start-page: 58
  issue: 1
  year: 2014
  ident: 10.1016/j.measurement.2021.110370_b0035
  article-title: An energy-aware trust derivation scheme with game theoretic approach in wireless sensor networks for IoT applications
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2014.2314132
– volume: 509
  start-page: 488
  year: 2020
  ident: 10.1016/j.measurement.2021.110370_b0120
  article-title: Modified NSGA-III for sensor placement in water distribution system
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.06.055
– start-page: 4479
  year: 2015
  ident: 10.1016/j.measurement.2021.110370_b0160
– volume: 89
  start-page: 72
  year: 2017
  ident: 10.1016/j.measurement.2021.110370_b0045
  article-title: An efficient authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2016.12.008
– volume: 45
  start-page: 101183
  year: 2021
  ident: 10.1016/j.measurement.2021.110370_b0145
  article-title: A synchronous placement and size-based multi-objective optimization method for heat dissipation design on antenna module of space solar power satellite
  publication-title: Sustainable Energy Technol. Assess.
  doi: 10.1016/j.seta.2021.101183
– start-page: 145
  year: 2011
  ident: 10.1016/j.measurement.2021.110370_b0210
– ident: 10.1016/j.measurement.2021.110370_b0275
– volume: 91
  start-page: 509
  year: 2016
  ident: 10.1016/j.measurement.2021.110370_b0085
  article-title: Data correlation analysis for optimal sensor placement using a bond energy algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.089
– volume: 6
  start-page: 67
  issue: 1
  year: 2012
  ident: 10.1016/j.measurement.2021.110370_b0020
  article-title: Wireless sensor networks for traffic management and road safety
  publication-title: IET Intel. Transport Syst.
  doi: 10.1049/iet-its.2010.0129
– volume: 151
  start-page: 107363
  year: 2021
  ident: 10.1016/j.measurement.2021.110370_b0060
  article-title: An adaptive sensor placement algorithm for structural health monitoring based on multi-objective iterative optimization using weight factor updating
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.107363
– volume: 149
  start-page: 831
  issue: 3
  year: 1999
  ident: 10.1016/j.measurement.2021.110370_b0300
  article-title: Menger curvature and rectifiability
  publication-title: Ann. Math.
  doi: 10.2307/121074
SSID ssj0006396
Score 2.4364352
Snippet •We devise a multi-objective optimization (MOO) for sensor placement.•Our MOO integrates reduced order model and lazy greedy combinatorial approach.•We develop...
We develop a novel sensor placement method that maximizes monitoring performance while minimizing deployment cost. Our method integrates a reduced order model...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110370
SubjectTerms Algorithms
Branch and bound
Combinatorial analysis
Configuration management
Gaussian process
Lazy greedy algorithm
Multi-objective combinatorial optimization
Multiple objective analysis
Normal distribution
Optimization
Pareto optimization
Pareto optimum
Placement
Proper Orthogonal Decomposition
Reduced order models
Sensor placement
Sensors
State estimation
Title Multi-objective optimization for sensor placement: An integrated combinatorial approach with reduced order model and Gaussian process
URI https://dx.doi.org/10.1016/j.measurement.2021.110370
https://www.proquest.com/docview/2624686434
Volume 187
WOSCitedRecordID wos000749736000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKBwgeEIwhBgMZCfEyZUri-IZ4qVDHRaMg0UnhycqcRGu1paVpp_ED-JX8GY7t3FYxVB54Sas0bpOez8fnfD4XhF5yAIlmofTSnCRelITMExk4rhLmUpAywgl1zSb4aCTiWH7p9X7VuTAXZ7woxOWlnP9XUcM5ELZJnf0HcTdfCifgPQgdjiB2OG4keJtS681Opk6V7c9AKZxX2ZY2qLAEzxVebDRWhxtsCkfYPDdwmI07bvj0uuy442wXptYrXGNrdrpGOnYD4l2yKm1C5tylHnSt3k8tEWkpiE65ijZ4s2YluxfbfERTG7QbLhCv7I7KaTL7MWnCh1aW8v2WFNNJA9WvsPidttsc-6Yl_KJLc4ThGs3R5N_UKq8Neipt-VjiGWPErWpOlQtOvCiwzdo7up53tHXwxzXE0RnTg_P2cQ_gjgKTMUFcl5OrdbtHn9Xh8dGRGg_j8av5d8-0NDNb_1V_lxtoK-RUij7aGnwYxh8bQwGMQ-YoQHfzt9GLNvzwml-_znxaMySsdTS-j-5Vbg0eODg-QL2s2EZ3O8Uut9EtG2ysy4fo5xpEcReiGCCKHURxA9HXeFDgFqD4CkBxDVBsAIorgGILUGwBigGguAYorgC6g44Ph-O3772qHYinSSSXns4jnjKRkDShKadBIrkMA619nuU-2A-SBTqIaEp8mQYhSymlYUZSQRJKk_xEkEeoX8yK7DHCzBDf3GcaniLKcz_RlOa-jFLNpBA62EWi_peVrmrlm5YtZ6oOipyqjoCUEZByAtpFYTN07grGbDLoTS1KVVm-zqJVAMpNhu_V4lfVDC5VyMKICXA4oid___gputNOuD3UXy5W2TN0U18sJ-XieQXa3x3w5Kw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+for+sensor+placement%3A+An+integrated+combinatorial+approach+with+reduced+order+model+and+Gaussian+process&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Xu%2C+Zhaoyi&rft.au=Guo%2C+Yanjie&rft.au=Saleh%2C+Joseph+Homer&rft.date=2022-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=187&rft.spage=1&rft_id=info:doi/10.1016%2Fj.measurement.2021.110370&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon