A dual gradient-projection method for large-scale strictly convex quadratic problems
The details of a solver for minimizing a strictly convex quadratic objective function subject to general linear constraints are presented. The method uses a gradient projection algorithm enhanced with subspace acceleration to solve the bound-constrained dual optimization problem. Such gradient proje...
Uloženo v:
| Vydáno v: | Computational optimization and applications Ročník 67; číslo 1; s. 1 - 38 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2017
Springer Nature B.V |
| Témata: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!