Data-Driven Distributed Information-Weighted Consensus Filtering in Discrete-Time Sensor Networks With Switching Topologies
This article proposes a data-driven distributed filtering method based on the consensus protocol and information-weighted strategy for discrete-time sensor networks with switching topologies. By introducing a data-driven method, a linear-like state equation is designed by utilizing only the input an...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on cybernetics Jg. 53; H. 12; S. 7548 - 7559 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This article proposes a data-driven distributed filtering method based on the consensus protocol and information-weighted strategy for discrete-time sensor networks with switching topologies. By introducing a data-driven method, a linear-like state equation is designed by utilizing only the input and output (I/O) data without a controlled object model. In the identification step, data-driven adaptive optimization recursive identification (DD-AORI) is exploited to identify the recurrence of time-varying parameters. It is proved that for discrete-time switching networks, estimation errors of all nodes are ultimately bounded when data-driven distributed information-weighted consensus filtering (DD-DICF) is executed. The algorithm combines with the received neighbors and direct or indirect observations for the target node to produce modified gains, resulting in a novel state estimator containing an information interaction mechanism. Subsequently, convergence analysis is performed on the basis of the Lyapunov equation to guarantee the boundedness of DD-DICF estimate error. Simulations verify the performance of the DD-DICF against the theoretical results as well as in comparison with some existing filtering algorithms. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2267 2168-2275 2168-2275 |
| DOI: | 10.1109/TCYB.2022.3166649 |