Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization
MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological ex...
Uloženo v:
| Vydáno v: | IEEE journal of biomedical and health informatics Ročník 26; číslo 1; s. 446 - 457 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v 2.0 and 0.9470 on HMDD v 3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations. |
|---|---|
| AbstractList | MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v 2.0 and 0.9470 on HMDD v 3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations. MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v2.0 and 0.9470 on HMDD v3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations. MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v2.0 and 0.9470 on HMDD v3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations.MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v2.0 and 0.9470 on HMDD v3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations. |
| Author | Liao, Bo Ding, Yulian Lei, Xiujuan Wu, Fang-Xiang |
| Author_xml | – sequence: 1 givenname: Yulian surname: Ding fullname: Ding, Yulian email: yud146@mail.usask.ca organization: Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada – sequence: 2 givenname: Xiujuan orcidid: 0000-0002-9901-1732 surname: Lei fullname: Lei, Xiujuan email: xjlei@snnu.edu.cn organization: School of Computer Science, Shaanxi Normal University, Xi'an, China – sequence: 3 givenname: Bo orcidid: 0000-0002-3383-5691 surname: Liao fullname: Liao, Bo email: dragonbw@163.com organization: School of Mathematics and Statistics, Hainan Normal University, Haikou, China – sequence: 4 givenname: Fang-Xiang orcidid: 0000-0002-4593-9332 surname: Wu fullname: Wu, Fang-Xiang email: faw341@mail.usask.ca organization: Division of Biomedical Engineering, Department of Mechanical Engineering, and Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34111017$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtP3DAUha2KqlDgByAkZKmbbjL1O8lyoLwqKAhRuoxs5waMMvFgO-Lx6-thBhYs6o2t6-_cq3vOV7Q2-AEQ2qFkQimpf_zaPzmdMMLohJOq4oJ9QhuMqqpgjFRrb29ai3W0HeM9yafKpVp9Qetc0NyDlhsoXAZonU1uuMUzd_V7Wvx0EXQEPI3RW6eT80PE-7nS4osBn499csWNg0d8o8PyW_f4OOj5HZ6OyReHg_UtBPzXpTt8rlNwT_hI2-SDe3nFt9DnTvcRtlf3JvpzdHh9cFKcXRyfHkzPCstFnQpDqVEliJoQa4GDZFYyY6jsmGJcE8O6UqlaGCIZN63SgipruG6Z7VohDN9E35d958E_jBBTM3PRQt_rAfwYGyYFkdkfxjP67QN678eQF8uUYpQoWUqaqb0VNZoZtM08uJkOz82bmxmgS8AGH2OA7h2hpFmE1ixCaxahNavQsqb8oLEuvfqUgnb9f5W7S6UDgPdJtZBUloT_A75fopU |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2023_05_052 crossref_primary_10_1093_bib_bbad270 crossref_primary_10_1093_bib_bbaf453 crossref_primary_10_1186_s12859_022_04694_y crossref_primary_10_1109_TCBB_2024_3351752 crossref_primary_10_1007_s11704_023_3610_y crossref_primary_10_1109_JBHI_2023_3299274 crossref_primary_10_1093_bib_bbac224 crossref_primary_10_1111_jcmm_18591 crossref_primary_10_1186_s12859_023_05152_z crossref_primary_10_1109_JBHI_2024_3397003 crossref_primary_10_1109_TCBB_2022_3187739 crossref_primary_10_1186_s12911_021_01671_y crossref_primary_10_1093_bib_bbac292 crossref_primary_10_7717_peerj_cs_2070 crossref_primary_10_1111_jcmm_18180 crossref_primary_10_3389_fphar_2025_1594186 crossref_primary_10_1186_s12915_024_01968_0 crossref_primary_10_1109_JBHI_2022_3186534 crossref_primary_10_1093_bib_bbad466 crossref_primary_10_1007_s13755_024_00319_1 crossref_primary_10_3389_fphar_2024_1529128 crossref_primary_10_1093_bib_bbac571 crossref_primary_10_1038_s41598_024_68897_4 crossref_primary_10_1007_s12539_023_00550_6 crossref_primary_10_3389_fgene_2025_1633391 crossref_primary_10_1093_bib_bbad259 crossref_primary_10_1109_TNNLS_2023_3289182 crossref_primary_10_3390_ijms25105126 crossref_primary_10_3390_genes13061021 crossref_primary_10_1016_j_artmed_2024_102775 crossref_primary_10_1109_JBHI_2023_3336247 crossref_primary_10_1109_TFUZZ_2024_3415730 crossref_primary_10_1007_s12539_024_00619_w crossref_primary_10_1186_s12864_024_11078_4 crossref_primary_10_1093_bib_bbad524 crossref_primary_10_1016_j_compbiomed_2025_110870 crossref_primary_10_1007_s11227_024_06013_z crossref_primary_10_1093_bib_bbae179 crossref_primary_10_1186_s12915_023_01796_8 crossref_primary_10_1109_ACCESS_2024_3440951 crossref_primary_10_1109_JBHI_2024_3467101 crossref_primary_10_1016_j_compbiolchem_2024_108085 crossref_primary_10_1109_TNNLS_2022_3212700 crossref_primary_10_1016_j_engappai_2025_111222 crossref_primary_10_1016_j_future_2024_05_055 crossref_primary_10_1016_j_compbiomed_2022_106289 crossref_primary_10_1016_j_compeleceng_2025_110242 crossref_primary_10_1109_JBHI_2024_3431693 |
| Cites_doi | 10.4161/cc.6.17.4641 10.1016/j.ymeth.2018.06.001 10.2174/1574893609666140804221135 10.1038/nmeth.2810 10.1093/bioinformatics/btt677 10.1093/nar/gkn714 10.1093/bioinformatics/btq064 10.1039/c2mb25180a 10.1038/srep43792 10.1016/j.gene.2018.04.010 10.1371/journal.pcbi.1006418 10.1038/msb.2008.27 10.1016/j.gde.2005.08.005 10.1093/bioinformatics/btz965 10.1016/j.jbi.2018.05.005 10.1093/bib/bbz159 10.1038/nature06174 10.1186/1752-0509-7-101 10.1016/S0092-8674(01)00616-X 10.1093/bioinformatics/btt014 10.1158/1535-7163.MCT-11-0055 10.1371/journal.pcbi.1005455 10.1126/science.aad2509 10.1109/TIP.2014.2303638 10.1177/1176934320919707 10.1007/978-3-642-31837-5_64 10.1016/S0092-8674(04)00045-5 10.1186/s12859-019-2640-9 10.1093/bioinformatics/btz297 10.1016/j.ymeth.2020.08.004 10.1093/bioinformatics/btz621 10.1093/bioinformatics/btv039 10.1109/TNNLS.2015.2412037 10.1186/1752-0509-4-s1-s2 10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0 10.1109/TCBB.2017.2776280 10.1126/science.1121566 10.1093/nar/gkt1023 10.1038/srep21106 10.1093/nar/gkt1181 10.1080/21655979.2020.1814658 10.1093/bioinformatics/bty327 10.1371/journal.pcbi.1006931 10.1038/srep05501 10.1109/TIP.2011.2105496 10.1093/bioinformatics/bty503 10.1053/j.gastro.2007.05.022 10.1093/bioinformatics/btu269 10.1073/pnas.0605298103 10.1109/FCST.2010.18 10.1093/nar/gky1010 10.3390/cells8091040 10.1093/bioinformatics/btz254 10.3390/cells8091012 10.1016/j.knosys.2019.03.023 10.1016/S0092-8674(03)00428-8 10.1093/nar/gkw1079 10.1038/s41598-020-63735-9 10.1093/nar/gkx1067 10.1093/nar/gkj112 10.1093/bioinformatics/btq241 10.1093/bioinformatics/btr500 10.1016/j.cell.2009.01.002 10.18632/oncotarget.15061 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2021.3088342 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 2168-2208 |
| EndPage | 457 |
| ExternalDocumentID | 34111017 10_1109_JBHI_2021_3088342 9451570 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: China Scholarship Council (CSC) – fundername: National Natural Science Foundation of China grantid: U19A2064; 61428209 funderid: 10.13039/501100001809 – fundername: Natural Science and Engineering Research Council of Canada (NSERC) |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c349t-b11b67e4900cce3e52c52bb15f2623a0b2f76694b0523bd6a416cb3ad2cfd44b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745829300045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Mon Sep 29 05:54:17 EDT 2025 Sun Nov 09 06:16:02 EST 2025 Thu Jan 02 22:55:36 EST 2025 Sat Nov 29 04:18:19 EST 2025 Tue Nov 18 22:38:04 EST 2025 Wed Aug 27 02:46:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-b11b67e4900cce3e52c52bb15f2623a0b2f76694b0523bd6a416cb3ad2cfd44b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9901-1732 0000-0002-3383-5691 0000-0002-4593-9332 |
| PMID | 34111017 |
| PQID | 2621065751 |
| PQPubID | 85417 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9451570 pubmed_primary_34111017 crossref_citationtrail_10_1109_JBHI_2021_3088342 proquest_journals_2621065751 crossref_primary_10_1109_JBHI_2021_3088342 proquest_miscellaneous_2540519423 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan. 2022-1-00 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref46 Kipf (ref57) 2016 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Kipf (ref50) 2016 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Bruna (ref53) 2013 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref5 doi: 10.4161/cc.6.17.4641 – ident: ref66 doi: 10.1016/j.ymeth.2018.06.001 – ident: ref12 doi: 10.2174/1574893609666140804221135 – ident: ref42 doi: 10.1038/nmeth.2810 – ident: ref24 doi: 10.1093/bioinformatics/btt677 – ident: ref17 doi: 10.1093/nar/gkn714 – ident: ref49 doi: 10.1093/bioinformatics/btq064 – year: 2016 ident: ref57 article-title: Variational graph auto-encoders – ident: ref20 doi: 10.1039/c2mb25180a – ident: ref64 doi: 10.1038/srep43792 – ident: ref15 doi: 10.1016/j.gene.2018.04.010 – ident: ref65 doi: 10.1371/journal.pcbi.1006418 – ident: ref58 doi: 10.1038/msb.2008.27 – ident: ref3 doi: 10.1016/j.gde.2005.08.005 – ident: ref40 doi: 10.1093/bioinformatics/btz965 – ident: ref26 doi: 10.1016/j.jbi.2018.05.005 – ident: ref37 doi: 10.1093/bib/bbz159 – ident: ref13 doi: 10.1038/nature06174 – ident: ref28 doi: 10.1186/1752-0509-7-101 – ident: ref9 doi: 10.1016/S0092-8674(01)00616-X – ident: ref18 doi: 10.1093/bioinformatics/btt014 – ident: ref30 doi: 10.1158/1535-7163.MCT-11-0055 – ident: ref59 doi: 10.1371/journal.pcbi.1005455 – ident: ref14 doi: 10.1126/science.aad2509 – ident: ref56 doi: 10.1109/TIP.2014.2303638 – ident: ref39 doi: 10.1177/1176934320919707 – ident: ref10 doi: 10.1007/978-3-642-31837-5_64 – ident: ref1 doi: 10.1016/S0092-8674(04)00045-5 – ident: ref32 doi: 10.1186/s12859-019-2640-9 – ident: ref61 doi: 10.1093/bioinformatics/btz297 – year: 2013 ident: ref53 article-title: Spectral networks and locally connected networks on graphs – ident: ref41 doi: 10.1016/j.ymeth.2020.08.004 – ident: ref52 doi: 10.1093/bioinformatics/btz621 – ident: ref29 doi: 10.1093/bioinformatics/btv039 – ident: ref54 doi: 10.1109/TNNLS.2015.2412037 – ident: ref21 doi: 10.1186/1752-0509-4-s1-s2 – ident: ref23 doi: 10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0 – ident: ref25 doi: 10.1109/TCBB.2017.2776280 – ident: ref4 doi: 10.1126/science.1121566 – ident: ref16 doi: 10.1093/nar/gkt1023 – ident: ref27 doi: 10.1038/srep21106 – ident: ref45 doi: 10.1093/nar/gkt1181 – ident: ref67 doi: 10.1080/21655979.2020.1814658 – ident: ref34 doi: 10.1093/bioinformatics/bty327 – ident: ref44 doi: 10.1371/journal.pcbi.1006931 – ident: ref31 doi: 10.1038/srep05501 – ident: ref55 doi: 10.1109/TIP.2011.2105496 – ident: ref36 doi: 10.1093/bioinformatics/bty503 – ident: ref6 doi: 10.1053/j.gastro.2007.05.022 – ident: ref33 doi: 10.1093/bioinformatics/btu269 – ident: ref7 doi: 10.1073/pnas.0605298103 – ident: ref22 doi: 10.1109/FCST.2010.18 – ident: ref43 doi: 10.1093/nar/gky1010 – ident: ref63 doi: 10.3390/cells8091040 – ident: ref38 doi: 10.1093/bioinformatics/btz254 – ident: ref51 doi: 10.3390/cells8091012 – ident: ref60 doi: 10.1016/j.knosys.2019.03.023 – ident: ref2 doi: 10.1016/S0092-8674(03)00428-8 – ident: ref19 doi: 10.1093/nar/gkw1079 – ident: ref62 doi: 10.1038/s41598-020-63735-9 – ident: ref46 doi: 10.1093/nar/gkx1067 – ident: ref11 doi: 10.1093/nar/gkj112 – year: 2016 ident: ref50 article-title: Semi-supervised classification with graph convolutional networks – ident: ref47 doi: 10.1093/bioinformatics/btq241 – ident: ref48 doi: 10.1093/bioinformatics/btr500 – ident: ref8 doi: 10.1016/j.cell.2009.01.002 – ident: ref35 doi: 10.18632/oncotarget.15061 |
| SSID | ssj0000816896 |
| Score | 2.5565991 |
| Snippet | MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 446 |
| SubjectTerms | Algorithms Biological activity Biological system modeling Biology Coders Colon Colon cancer Computational Biology - methods Computational modeling Computer applications Disease Diseases Esophagus Factorization Feature extraction Genetic Predisposition to Disease Graph neural networks Graphical representations Humans Mathematical analysis Mathematical models MicroRNAs MicroRNAs - genetics miRNA miRNA-disease associations Neural networks Neural Networks, Computer non-negative matrix factorization Predictive models Similarity similarity network variational graph autoencoder |
| Title | Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization |
| URI | https://ieeexplore.ieee.org/document/9451570 https://www.ncbi.nlm.nih.gov/pubmed/34111017 https://www.proquest.com/docview/2621065751 https://www.proquest.com/docview/2540519423 |
| Volume | 26 |
| WOSCitedRecordID | wos000745829300045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VClBfOFoKgVIZiSeEW9txDj9uoUtB6lIhKPsWxY4tVipZlM1y_HvGjjcCCZB4sxLn0jcTz-GZD-Bpzk3jpM0oqzNJcYVuqLJOUJcLxYRDh8yVgWyimM3K-VxdbMHzsRbGWhs2n9kjPwy5_GZp1j5Udqwkrr4FOujXiqIYarXGeEogkAh0XAIHFBVRxiQmZ-r4zcnZa3QGBT9KUa1S6Uls8P_NvUD-tiIFipW_W5th1Zne_r_3vQO3onVJJoM43IUt2-7CjYFv8scu3DyPmfQ96C46P_abnsnnxbvZhL4cUjXkF8BW5ASPNORtS0KhLr1c2G_kEt3rGEIkr3y_azJZ90t62vry-I58XPSfyLnv_P-dTAObTyz1vAcfpqfvX5zRyL9ATSpVTzXnOi-sVIwZY1ObCZMJrXnmBBpNNdPCFXmupPahZd3kNRp3Rqd1I4xrpNTpPmy3y9Y-AKIKa-uaN7KUqdRGaG6McJliujRSOZkA22BQmdic3HNkXFXBSWGq8ghWHsEqIpjAs_GSL0Nnjn9N3vPwjBMjMgkcbICuou6uKvw49JN9PiqBJ-Np1DqfSqlbu1zjHG_oooiJNIH7g4CM997I1cM_P_MR7AhfQhHCOAew3Xdr-xium6_9YtUdomjPy8Mg2j8Bc8rxOQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5Xnh0UIbKGAkTgi3seMk6-MWumyhu1SotL1FsWOLldpslc0W-Pd4HG8EEiBxsxLnpW8mnodnPoBXGdOVFSalcZkK6lboikpjObUZlzG3ziGzA082kU-ng_NzebwGb_paGGOM33xmdnHoc_nVXC8xVLYnhVt9c-eg30iF4Kyr1uojKp5CwhNycTegThVFSGOyWO592B8fOneQs93EKVYikMbG_cEZiuRva5InWfm7venXndH9_3vjB3Av2Jdk2AnEQ1gz9Qbc6hgnf2zA7UnIpW9Cc9zgGLc9k8vZ5-mQvuuSNeQXyBZk3x2pyKea-FJdejoz38ipc7BDEJG8x47XZLhs5_SgxgL5hpzN2q9kgr3_v5OR5_MJxZ6P4Mvo4OTtmAYGBqoTIVuqGFNZboSMY61NYlKuU64USy13ZlMZK27zLJNCYXBZVVnpzDutkrLi2lZCqOQxrNfz2mwDkbkxZckqMRCJUJorpjW3qYzVQAtpRQTxCoNCh_bkyJJxUXg3JZYFIlgggkVAMILX_SVXXW-Of03eRHj6iQGZCHZWQBdBexeF-zjnKWNGKoKX_Wmnd5hMKWszX7o5aOo6EeNJBFudgPT3XsnVkz8_8wXcGZ9Mjoqjw-nHp3CXY0GFD-rswHrbLM0zuKmv29miee4F_Cd2BfOY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+miRNA-Disease+Associations+Based+On+Multi-View+Variational+Graph+Auto-Encoder+With+Matrix+Factorization&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Ding%2C+Yulian&rft.au=Lei%2C+Xiujuan&rft.au=Liao%2C+Bo&rft.au=Fang-Xiang%2C+Wu&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=26&rft.issue=1&rft.spage=446&rft_id=info:doi/10.1109%2FJBHI.2021.3088342&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |