Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization

MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological ex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of biomedical and health informatics Ročník 26; číslo 1; s. 446 - 457
Hlavní autoři: Ding, Yulian, Lei, Xiujuan, Liao, Bo, Wu, Fang-Xiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2194, 2168-2208, 2168-2208
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v 2.0 and 0.9470 on HMDD v 3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations.
AbstractList MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v 2.0 and 0.9470 on HMDD v 3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations.
MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v2.0 and 0.9470 on HMDD v3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations.
MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v2.0 and 0.9470 on HMDD v3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations.MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v2.0 and 0.9470 on HMDD v3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations.
Author Liao, Bo
Ding, Yulian
Lei, Xiujuan
Wu, Fang-Xiang
Author_xml – sequence: 1
  givenname: Yulian
  surname: Ding
  fullname: Ding, Yulian
  email: yud146@mail.usask.ca
  organization: Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
– sequence: 2
  givenname: Xiujuan
  orcidid: 0000-0002-9901-1732
  surname: Lei
  fullname: Lei, Xiujuan
  email: xjlei@snnu.edu.cn
  organization: School of Computer Science, Shaanxi Normal University, Xi'an, China
– sequence: 3
  givenname: Bo
  orcidid: 0000-0002-3383-5691
  surname: Liao
  fullname: Liao, Bo
  email: dragonbw@163.com
  organization: School of Mathematics and Statistics, Hainan Normal University, Haikou, China
– sequence: 4
  givenname: Fang-Xiang
  orcidid: 0000-0002-4593-9332
  surname: Wu
  fullname: Wu, Fang-Xiang
  email: faw341@mail.usask.ca
  organization: Division of Biomedical Engineering, Department of Mechanical Engineering, and Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34111017$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUha2KqlDgByAkZKmbbjL1O8lyoLwqKAhRuoxs5waMMvFgO-Lx6-thBhYs6o2t6-_cq3vOV7Q2-AEQ2qFkQimpf_zaPzmdMMLohJOq4oJ9QhuMqqpgjFRrb29ai3W0HeM9yafKpVp9Qetc0NyDlhsoXAZonU1uuMUzd_V7Wvx0EXQEPI3RW6eT80PE-7nS4osBn499csWNg0d8o8PyW_f4OOj5HZ6OyReHg_UtBPzXpTt8rlNwT_hI2-SDe3nFt9DnTvcRtlf3JvpzdHh9cFKcXRyfHkzPCstFnQpDqVEliJoQa4GDZFYyY6jsmGJcE8O6UqlaGCIZN63SgipruG6Z7VohDN9E35d958E_jBBTM3PRQt_rAfwYGyYFkdkfxjP67QN678eQF8uUYpQoWUqaqb0VNZoZtM08uJkOz82bmxmgS8AGH2OA7h2hpFmE1ixCaxahNavQsqb8oLEuvfqUgnb9f5W7S6UDgPdJtZBUloT_A75fopU
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_neunet_2023_05_052
crossref_primary_10_1093_bib_bbad270
crossref_primary_10_1093_bib_bbaf453
crossref_primary_10_1186_s12859_022_04694_y
crossref_primary_10_1109_TCBB_2024_3351752
crossref_primary_10_1007_s11704_023_3610_y
crossref_primary_10_1109_JBHI_2023_3299274
crossref_primary_10_1093_bib_bbac224
crossref_primary_10_1111_jcmm_18591
crossref_primary_10_1186_s12859_023_05152_z
crossref_primary_10_1109_JBHI_2024_3397003
crossref_primary_10_1109_TCBB_2022_3187739
crossref_primary_10_1186_s12911_021_01671_y
crossref_primary_10_1093_bib_bbac292
crossref_primary_10_7717_peerj_cs_2070
crossref_primary_10_1111_jcmm_18180
crossref_primary_10_3389_fphar_2025_1594186
crossref_primary_10_1186_s12915_024_01968_0
crossref_primary_10_1109_JBHI_2022_3186534
crossref_primary_10_1093_bib_bbad466
crossref_primary_10_1007_s13755_024_00319_1
crossref_primary_10_3389_fphar_2024_1529128
crossref_primary_10_1093_bib_bbac571
crossref_primary_10_1038_s41598_024_68897_4
crossref_primary_10_1007_s12539_023_00550_6
crossref_primary_10_3389_fgene_2025_1633391
crossref_primary_10_1093_bib_bbad259
crossref_primary_10_1109_TNNLS_2023_3289182
crossref_primary_10_3390_ijms25105126
crossref_primary_10_3390_genes13061021
crossref_primary_10_1016_j_artmed_2024_102775
crossref_primary_10_1109_JBHI_2023_3336247
crossref_primary_10_1109_TFUZZ_2024_3415730
crossref_primary_10_1007_s12539_024_00619_w
crossref_primary_10_1186_s12864_024_11078_4
crossref_primary_10_1093_bib_bbad524
crossref_primary_10_1016_j_compbiomed_2025_110870
crossref_primary_10_1007_s11227_024_06013_z
crossref_primary_10_1093_bib_bbae179
crossref_primary_10_1186_s12915_023_01796_8
crossref_primary_10_1109_ACCESS_2024_3440951
crossref_primary_10_1109_JBHI_2024_3467101
crossref_primary_10_1016_j_compbiolchem_2024_108085
crossref_primary_10_1109_TNNLS_2022_3212700
crossref_primary_10_1016_j_engappai_2025_111222
crossref_primary_10_1016_j_future_2024_05_055
crossref_primary_10_1016_j_compbiomed_2022_106289
crossref_primary_10_1016_j_compeleceng_2025_110242
crossref_primary_10_1109_JBHI_2024_3431693
Cites_doi 10.4161/cc.6.17.4641
10.1016/j.ymeth.2018.06.001
10.2174/1574893609666140804221135
10.1038/nmeth.2810
10.1093/bioinformatics/btt677
10.1093/nar/gkn714
10.1093/bioinformatics/btq064
10.1039/c2mb25180a
10.1038/srep43792
10.1016/j.gene.2018.04.010
10.1371/journal.pcbi.1006418
10.1038/msb.2008.27
10.1016/j.gde.2005.08.005
10.1093/bioinformatics/btz965
10.1016/j.jbi.2018.05.005
10.1093/bib/bbz159
10.1038/nature06174
10.1186/1752-0509-7-101
10.1016/S0092-8674(01)00616-X
10.1093/bioinformatics/btt014
10.1158/1535-7163.MCT-11-0055
10.1371/journal.pcbi.1005455
10.1126/science.aad2509
10.1109/TIP.2014.2303638
10.1177/1176934320919707
10.1007/978-3-642-31837-5_64
10.1016/S0092-8674(04)00045-5
10.1186/s12859-019-2640-9
10.1093/bioinformatics/btz297
10.1016/j.ymeth.2020.08.004
10.1093/bioinformatics/btz621
10.1093/bioinformatics/btv039
10.1109/TNNLS.2015.2412037
10.1186/1752-0509-4-s1-s2
10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0
10.1109/TCBB.2017.2776280
10.1126/science.1121566
10.1093/nar/gkt1023
10.1038/srep21106
10.1093/nar/gkt1181
10.1080/21655979.2020.1814658
10.1093/bioinformatics/bty327
10.1371/journal.pcbi.1006931
10.1038/srep05501
10.1109/TIP.2011.2105496
10.1093/bioinformatics/bty503
10.1053/j.gastro.2007.05.022
10.1093/bioinformatics/btu269
10.1073/pnas.0605298103
10.1109/FCST.2010.18
10.1093/nar/gky1010
10.3390/cells8091040
10.1093/bioinformatics/btz254
10.3390/cells8091012
10.1016/j.knosys.2019.03.023
10.1016/S0092-8674(03)00428-8
10.1093/nar/gkw1079
10.1038/s41598-020-63735-9
10.1093/nar/gkx1067
10.1093/nar/gkj112
10.1093/bioinformatics/btq241
10.1093/bioinformatics/btr500
10.1016/j.cell.2009.01.002
10.18632/oncotarget.15061
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2021.3088342
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 2168-2208
EndPage 457
ExternalDocumentID 34111017
10_1109_JBHI_2021_3088342
9451570
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Scholarship Council (CSC)
– fundername: National Natural Science Foundation of China
  grantid: U19A2064; 61428209
  funderid: 10.13039/501100001809
– fundername: Natural Science and Engineering Research Council of Canada (NSERC)
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-b11b67e4900cce3e52c52bb15f2623a0b2f76694b0523bd6a416cb3ad2cfd44b3
IEDL.DBID RIE
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745829300045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2194
2168-2208
IngestDate Mon Sep 29 05:54:17 EDT 2025
Sun Nov 09 06:16:02 EST 2025
Thu Jan 02 22:55:36 EST 2025
Sat Nov 29 04:18:19 EST 2025
Tue Nov 18 22:38:04 EST 2025
Wed Aug 27 02:46:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-b11b67e4900cce3e52c52bb15f2623a0b2f76694b0523bd6a416cb3ad2cfd44b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9901-1732
0000-0002-3383-5691
0000-0002-4593-9332
PMID 34111017
PQID 2621065751
PQPubID 85417
PageCount 12
ParticipantIDs ieee_primary_9451570
pubmed_primary_34111017
crossref_citationtrail_10_1109_JBHI_2021_3088342
proquest_journals_2621065751
crossref_primary_10_1109_JBHI_2021_3088342
proquest_miscellaneous_2540519423
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref46
Kipf (ref57) 2016
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Kipf (ref50) 2016
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Bruna (ref53) 2013
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref5
  doi: 10.4161/cc.6.17.4641
– ident: ref66
  doi: 10.1016/j.ymeth.2018.06.001
– ident: ref12
  doi: 10.2174/1574893609666140804221135
– ident: ref42
  doi: 10.1038/nmeth.2810
– ident: ref24
  doi: 10.1093/bioinformatics/btt677
– ident: ref17
  doi: 10.1093/nar/gkn714
– ident: ref49
  doi: 10.1093/bioinformatics/btq064
– year: 2016
  ident: ref57
  article-title: Variational graph auto-encoders
– ident: ref20
  doi: 10.1039/c2mb25180a
– ident: ref64
  doi: 10.1038/srep43792
– ident: ref15
  doi: 10.1016/j.gene.2018.04.010
– ident: ref65
  doi: 10.1371/journal.pcbi.1006418
– ident: ref58
  doi: 10.1038/msb.2008.27
– ident: ref3
  doi: 10.1016/j.gde.2005.08.005
– ident: ref40
  doi: 10.1093/bioinformatics/btz965
– ident: ref26
  doi: 10.1016/j.jbi.2018.05.005
– ident: ref37
  doi: 10.1093/bib/bbz159
– ident: ref13
  doi: 10.1038/nature06174
– ident: ref28
  doi: 10.1186/1752-0509-7-101
– ident: ref9
  doi: 10.1016/S0092-8674(01)00616-X
– ident: ref18
  doi: 10.1093/bioinformatics/btt014
– ident: ref30
  doi: 10.1158/1535-7163.MCT-11-0055
– ident: ref59
  doi: 10.1371/journal.pcbi.1005455
– ident: ref14
  doi: 10.1126/science.aad2509
– ident: ref56
  doi: 10.1109/TIP.2014.2303638
– ident: ref39
  doi: 10.1177/1176934320919707
– ident: ref10
  doi: 10.1007/978-3-642-31837-5_64
– ident: ref1
  doi: 10.1016/S0092-8674(04)00045-5
– ident: ref32
  doi: 10.1186/s12859-019-2640-9
– ident: ref61
  doi: 10.1093/bioinformatics/btz297
– year: 2013
  ident: ref53
  article-title: Spectral networks and locally connected networks on graphs
– ident: ref41
  doi: 10.1016/j.ymeth.2020.08.004
– ident: ref52
  doi: 10.1093/bioinformatics/btz621
– ident: ref29
  doi: 10.1093/bioinformatics/btv039
– ident: ref54
  doi: 10.1109/TNNLS.2015.2412037
– ident: ref21
  doi: 10.1186/1752-0509-4-s1-s2
– ident: ref23
  doi: 10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0
– ident: ref25
  doi: 10.1109/TCBB.2017.2776280
– ident: ref4
  doi: 10.1126/science.1121566
– ident: ref16
  doi: 10.1093/nar/gkt1023
– ident: ref27
  doi: 10.1038/srep21106
– ident: ref45
  doi: 10.1093/nar/gkt1181
– ident: ref67
  doi: 10.1080/21655979.2020.1814658
– ident: ref34
  doi: 10.1093/bioinformatics/bty327
– ident: ref44
  doi: 10.1371/journal.pcbi.1006931
– ident: ref31
  doi: 10.1038/srep05501
– ident: ref55
  doi: 10.1109/TIP.2011.2105496
– ident: ref36
  doi: 10.1093/bioinformatics/bty503
– ident: ref6
  doi: 10.1053/j.gastro.2007.05.022
– ident: ref33
  doi: 10.1093/bioinformatics/btu269
– ident: ref7
  doi: 10.1073/pnas.0605298103
– ident: ref22
  doi: 10.1109/FCST.2010.18
– ident: ref43
  doi: 10.1093/nar/gky1010
– ident: ref63
  doi: 10.3390/cells8091040
– ident: ref38
  doi: 10.1093/bioinformatics/btz254
– ident: ref51
  doi: 10.3390/cells8091012
– ident: ref60
  doi: 10.1016/j.knosys.2019.03.023
– ident: ref2
  doi: 10.1016/S0092-8674(03)00428-8
– ident: ref19
  doi: 10.1093/nar/gkw1079
– ident: ref62
  doi: 10.1038/s41598-020-63735-9
– ident: ref46
  doi: 10.1093/nar/gkx1067
– ident: ref11
  doi: 10.1093/nar/gkj112
– year: 2016
  ident: ref50
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref47
  doi: 10.1093/bioinformatics/btq241
– ident: ref48
  doi: 10.1093/bioinformatics/btr500
– ident: ref8
  doi: 10.1016/j.cell.2009.01.002
– ident: ref35
  doi: 10.18632/oncotarget.15061
SSID ssj0000816896
Score 2.5565991
Snippet MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 446
SubjectTerms Algorithms
Biological activity
Biological system modeling
Biology
Coders
Colon
Colon cancer
Computational Biology - methods
Computational modeling
Computer applications
Disease
Diseases
Esophagus
Factorization
Feature extraction
Genetic Predisposition to Disease
Graph neural networks
Graphical representations
Humans
Mathematical analysis
Mathematical models
MicroRNAs
MicroRNAs - genetics
miRNA
miRNA-disease associations
Neural networks
Neural Networks, Computer
non-negative matrix factorization
Predictive models
Similarity
similarity network
variational graph autoencoder
Title Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization
URI https://ieeexplore.ieee.org/document/9451570
https://www.ncbi.nlm.nih.gov/pubmed/34111017
https://www.proquest.com/docview/2621065751
https://www.proquest.com/docview/2540519423
Volume 26
WOSCitedRecordID wos000745829300045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VClBfOFoKgVIZiSeEW9txDj9uoUtB6lIhKPsWxY4tVipZlM1y_HvGjjcCCZB4sxLn0jcTz-GZD-Bpzk3jpM0oqzNJcYVuqLJOUJcLxYRDh8yVgWyimM3K-VxdbMHzsRbGWhs2n9kjPwy5_GZp1j5Udqwkrr4FOujXiqIYarXGeEogkAh0XAIHFBVRxiQmZ-r4zcnZa3QGBT9KUa1S6Uls8P_NvUD-tiIFipW_W5th1Zne_r_3vQO3onVJJoM43IUt2-7CjYFv8scu3DyPmfQ96C46P_abnsnnxbvZhL4cUjXkF8BW5ASPNORtS0KhLr1c2G_kEt3rGEIkr3y_azJZ90t62vry-I58XPSfyLnv_P-dTAObTyz1vAcfpqfvX5zRyL9ATSpVTzXnOi-sVIwZY1ObCZMJrXnmBBpNNdPCFXmupPahZd3kNRp3Rqd1I4xrpNTpPmy3y9Y-AKIKa-uaN7KUqdRGaG6McJliujRSOZkA22BQmdic3HNkXFXBSWGq8ghWHsEqIpjAs_GSL0Nnjn9N3vPwjBMjMgkcbICuou6uKvw49JN9PiqBJ-Np1DqfSqlbu1zjHG_oooiJNIH7g4CM997I1cM_P_MR7AhfQhHCOAew3Xdr-xium6_9YtUdomjPy8Mg2j8Bc8rxOQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5Xnh0UIbKGAkTgi3seMk6-MWumyhu1SotL1FsWOLldpslc0W-Pd4HG8EEiBxsxLnpW8mnodnPoBXGdOVFSalcZkK6lboikpjObUZlzG3ziGzA082kU-ng_NzebwGb_paGGOM33xmdnHoc_nVXC8xVLYnhVt9c-eg30iF4Kyr1uojKp5CwhNycTegThVFSGOyWO592B8fOneQs93EKVYikMbG_cEZiuRva5InWfm7venXndH9_3vjB3Av2Jdk2AnEQ1gz9Qbc6hgnf2zA7UnIpW9Cc9zgGLc9k8vZ5-mQvuuSNeQXyBZk3x2pyKea-FJdejoz38ipc7BDEJG8x47XZLhs5_SgxgL5hpzN2q9kgr3_v5OR5_MJxZ6P4Mvo4OTtmAYGBqoTIVuqGFNZboSMY61NYlKuU64USy13ZlMZK27zLJNCYXBZVVnpzDutkrLi2lZCqOQxrNfz2mwDkbkxZckqMRCJUJorpjW3qYzVQAtpRQTxCoNCh_bkyJJxUXg3JZYFIlgggkVAMILX_SVXXW-Of03eRHj6iQGZCHZWQBdBexeF-zjnKWNGKoKX_Wmnd5hMKWszX7o5aOo6EeNJBFudgPT3XsnVkz8_8wXcGZ9Mjoqjw-nHp3CXY0GFD-rswHrbLM0zuKmv29miee4F_Cd2BfOY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+miRNA-Disease+Associations+Based+On+Multi-View+Variational+Graph+Auto-Encoder+With+Matrix+Factorization&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Ding%2C+Yulian&rft.au=Lei%2C+Xiujuan&rft.au=Liao%2C+Bo&rft.au=Fang-Xiang%2C+Wu&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=26&rft.issue=1&rft.spage=446&rft_id=info:doi/10.1109%2FJBHI.2021.3088342&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon