An approximation polynomial-time algorithm for a sequence bi-clustering problem
We consider a strongly NP-hard problem of partitioning a finite sequence of vectors in Euclidean space into two clusters using the criterion of the minimal sum of the squared distances from the elements of the clusters to the centers of the clusters. The center of one of the clusters is to be optimi...
Uložené v:
| Vydané v: | Computational mathematics and mathematical physics Ročník 55; číslo 6; s. 1068 - 1076 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Moscow
Pleiades Publishing
01.06.2015
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0965-5425, 1555-6662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider a strongly NP-hard problem of partitioning a finite sequence of vectors in Euclidean space into two clusters using the criterion of the minimal sum of the squared distances from the elements of the clusters to the centers of the clusters. The center of one of the clusters is to be optimized and is determined as the mean value over all vectors in this cluster. The center of the other cluster is fixed at the origin. Moreover, the partition is such that the difference between the indices of two successive vectors in the first cluster is bounded above and below by prescribed constants. A 2-approximation polynomial-time algorithm is proposed for this problem. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0965-5425 1555-6662 |
| DOI: | 10.1134/S0965542515060068 |