An approximation polynomial-time algorithm for a sequence bi-clustering problem

We consider a strongly NP-hard problem of partitioning a finite sequence of vectors in Euclidean space into two clusters using the criterion of the minimal sum of the squared distances from the elements of the clusters to the centers of the clusters. The center of one of the clusters is to be optimi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mathematics and mathematical physics Ročník 55; číslo 6; s. 1068 - 1076
Hlavní autoři: Kel’manov, A. V., Khamidullin, S. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.06.2015
Springer Nature B.V
Témata:
ISSN:0965-5425, 1555-6662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a strongly NP-hard problem of partitioning a finite sequence of vectors in Euclidean space into two clusters using the criterion of the minimal sum of the squared distances from the elements of the clusters to the centers of the clusters. The center of one of the clusters is to be optimized and is determined as the mean value over all vectors in this cluster. The center of the other cluster is fixed at the origin. Moreover, the partition is such that the difference between the indices of two successive vectors in the first cluster is bounded above and below by prescribed constants. A 2-approximation polynomial-time algorithm is proposed for this problem.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542515060068