Finite difference, finite element and finite volume methods applied to two-point boundary value problems

This paper considers the finite difference, finite element and finite volume methods applied to the two-point boundary value problem − d dx p(x) du dx =f(x), a<x<b, u(a)=u(b)=0. By using an inversion formula of a nonsingular tridiagonal matrix, explicit expressions of approximate solutions by...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 139; číslo 1; s. 9 - 19
Hlavní autori: Fang, Qing, Tsuchiya, Takuya, Yamamoto, Tetsuro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.02.2002
Elsevier
Predmet:
ISSN:0377-0427, 1879-1778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper considers the finite difference, finite element and finite volume methods applied to the two-point boundary value problem − d dx p(x) du dx =f(x), a<x<b, u(a)=u(b)=0. By using an inversion formula of a nonsingular tridiagonal matrix, explicit expressions of approximate solutions by three methods are given, which lead to a unified understanding of these methods as well as their unified error estimates. Numerical examples are also given.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(01)00392-2