Finite difference, finite element and finite volume methods applied to two-point boundary value problems
This paper considers the finite difference, finite element and finite volume methods applied to the two-point boundary value problem − d dx p(x) du dx =f(x), a<x<b, u(a)=u(b)=0. By using an inversion formula of a nonsingular tridiagonal matrix, explicit expressions of approximate solutions by...
Uložené v:
| Vydané v: | Journal of computational and applied mathematics Ročník 139; číslo 1; s. 9 - 19 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.02.2002
Elsevier |
| Predmet: | |
| ISSN: | 0377-0427, 1879-1778 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper considers the finite difference, finite element and finite volume methods applied to the two-point boundary value problem
−
d
dx
p(x)
du
dx
=f(x),
a<x<b,
u(a)=u(b)=0.
By using an inversion formula of a nonsingular tridiagonal matrix, explicit expressions of approximate solutions by three methods are given, which lead to a unified understanding of these methods as well as their unified error estimates. Numerical examples are also given. |
|---|---|
| Bibliografia: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/S0377-0427(01)00392-2 |