Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model

For the difficulty that the information vector in the identification model contains the unknown variables, we substitute these unknown variables with the outputs of the auxiliary model and then develop an auxiliary model based recursive least squares algorithm, an auxiliary model based least squares...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics Jg. 76; H. 1; S. 777 - 784
Hauptverfasser: Hu, Huiyi, Ding, Rui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.04.2014
Springer Nature B.V
Schlagworte:
ISSN:0924-090X, 1573-269X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the difficulty that the information vector in the identification model contains the unknown variables, we substitute these unknown variables with the outputs of the auxiliary model and then develop an auxiliary model based recursive least squares algorithm, an auxiliary model based least squares iterative (AM-LSI) algorithm, and derive an equivalent matrix decomposition based AM-LSI algorithm for input nonlinear controlled autoregressive systems based on the auxiliary model. The simulation results show that the proposed algorithms can estimate the parameters of a class of input nonlinear systems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-013-1168-1