Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model
For the difficulty that the information vector in the identification model contains the unknown variables, we substitute these unknown variables with the outputs of the auxiliary model and then develop an auxiliary model based recursive least squares algorithm, an auxiliary model based least squares...
Gespeichert in:
| Veröffentlicht in: | Nonlinear dynamics Jg. 76; H. 1; S. 777 - 784 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.04.2014
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0924-090X, 1573-269X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | For the difficulty that the information vector in the identification model contains the unknown variables, we substitute these unknown variables with the outputs of the auxiliary model and then develop an auxiliary model based recursive least squares algorithm, an auxiliary model based least squares iterative (AM-LSI) algorithm, and derive an equivalent matrix decomposition based AM-LSI algorithm for input nonlinear controlled autoregressive systems based on the auxiliary model. The simulation results show that the proposed algorithms can estimate the parameters of a class of input nonlinear systems. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0924-090X 1573-269X |
| DOI: | 10.1007/s11071-013-1168-1 |