Bubbles in assets with finite life

We study the speculative value of a finitely lived asset when investors disagree and short sales are limited. In this case, investors are willing to pay a speculative value for the resale option they obtain when they acquire the asset. Using martingale arguments, we characterize the equilibrium spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and financial economics Jg. 13; H. 3; S. 429 - 458
Hauptverfasser: Berestycki, Henri, Bruggeman, Cameron, Monneau, Regis, Scheinkman, José A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2019
Springer Nature B.V
Schlagworte:
ISSN:1862-9679, 1862-9660
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the speculative value of a finitely lived asset when investors disagree and short sales are limited. In this case, investors are willing to pay a speculative value for the resale option they obtain when they acquire the asset. Using martingale arguments, we characterize the equilibrium speculative value as a solution to a fixed point problem for a monotone operator F . A Dynamic Programming Principle applies and is used to show that the minimal solution to the fixed-point problem is a viscosity solution of a naturally associated (non-local) obstacle problem. Combining the monotonicity of the operator F and a comparison principle for viscosity solutions to the obstacle problem we obtain several comparison of solution results. We also use a characterization of the exercise boundary of the obstacle problem to study the effect of an increase in the costs of transactions on the value of the bubble and on the volume of trade, and in particular to quantify the effect of a small transaction (Tobin) tax.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1862-9679
1862-9660
DOI:10.1007/s11579-018-0233-4