Estimates of the trace of the inverse of a symmetric matrix using the modified Chebyshev algorithm
In this paper we study how to compute an estimate of the trace of the inverse of a symmetric matrix by using Gauss quadrature and the modified Chebyshev algorithm. As auxiliary polynomials we use the shifted Chebyshev polynomials. Since this can be too costly in computer storage for large matrices w...
Saved in:
| Published in: | Numerical algorithms Vol. 51; no. 3; pp. 309 - 318 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.07.2009
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper we study how to compute an estimate of the trace of the inverse of a symmetric matrix by using Gauss quadrature and the modified Chebyshev algorithm. As auxiliary polynomials we use the shifted Chebyshev polynomials. Since this can be too costly in computer storage for large matrices we also propose to compute the modified moments with a stochastic approach due to Hutchinson (Commun Stat Simul 18:1059–1076,
1989
). |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-008-9246-z |