An Accelerated Inexact Proximal Point Algorithm for Convex Minimization

The proximal point algorithm is classical and popular in the community of optimization. In practice, inexact proximal point algorithms which solve the involved proximal subproblems approximately subject to certain inexact criteria are truly implementable. In this paper, we first propose an inexact p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 154; H. 2; S. 536 - 548
Hauptverfasser: He, Bingsheng, Yuan, Xiaoming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.08.2012
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proximal point algorithm is classical and popular in the community of optimization. In practice, inexact proximal point algorithms which solve the involved proximal subproblems approximately subject to certain inexact criteria are truly implementable. In this paper, we first propose an inexact proximal point algorithm with a new inexact criterion for solving convex minimization, and show its O (1/ k ) iteration-complexity. Then we show that this inexact proximal point algorithm is eligible for being accelerated by some influential acceleration schemes proposed by Nesterov. Accordingly, an accelerated inexact proximal point algorithm with an iteration-complexity of O (1/ k 2 ) is proposed.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-011-9948-6