An Accelerated Inexact Proximal Point Algorithm for Convex Minimization

The proximal point algorithm is classical and popular in the community of optimization. In practice, inexact proximal point algorithms which solve the involved proximal subproblems approximately subject to certain inexact criteria are truly implementable. In this paper, we first propose an inexact p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 154; číslo 2; s. 536 - 548
Hlavní autoři: He, Bingsheng, Yuan, Xiaoming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.08.2012
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The proximal point algorithm is classical and popular in the community of optimization. In practice, inexact proximal point algorithms which solve the involved proximal subproblems approximately subject to certain inexact criteria are truly implementable. In this paper, we first propose an inexact proximal point algorithm with a new inexact criterion for solving convex minimization, and show its O (1/ k ) iteration-complexity. Then we show that this inexact proximal point algorithm is eligible for being accelerated by some influential acceleration schemes proposed by Nesterov. Accordingly, an accelerated inexact proximal point algorithm with an iteration-complexity of O (1/ k 2 ) is proposed.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-011-9948-6