Adaptive Fuzzy Output Feedback Fault-Tolerant Compensation for Uncertain Nonlinear Systems With Infinite Number of Time-Varying Actuator Failures and Full-State Constraints

This paper focuses on the observer-based fuzzy adaptive fault-tolerant tracking control problem for uncertain nonlinear systems subject to unmeasured states and unmatched external disturbances. By designing a high gain state observer and a disturbance observer, unmeasured states and unmatched extern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 51; H. 2; S. 568 - 578
Hauptverfasser: Jing, Yan-Hui, Yang, Guang-Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the observer-based fuzzy adaptive fault-tolerant tracking control problem for uncertain nonlinear systems subject to unmeasured states and unmatched external disturbances. By designing a high gain state observer and a disturbance observer, unmeasured states and unmatched external disturbances are estimated and robust tracking performance is improved. Moreover, the barrier-type functions are introduced to the backstepping design procedure to address the problem that all states do not violate their constraint bounds. Finally, a novel fault-tolerant control scheme for output feedback is proposed by combining with the projection technique. By designing appropriate Lyapunov functions, it is concluded that all signals of the plant are bounded and the desired tracking error can be regulated to a small neighborhood around the origin. The simulation results show the effectiveness of the designed control scheme.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2019.2904768