Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions

The Fourier method is used to find a classical solution of the mixed problem for a first-order differential equation with involution and periodic boundary conditions. The application of the Fourier method is substantiated using refined asymptotic formulas obtained for the eigenvalues and eigenfuncti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mathematics and mathematical physics Ročník 54; číslo 1; s. 1 - 10
Hlavní autor: Burlutskaya, M. Sh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.01.2014
Springer Nature B.V
Témata:
ISSN:0965-5425, 1555-6662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Fourier method is used to find a classical solution of the mixed problem for a first-order differential equation with involution and periodic boundary conditions. The application of the Fourier method is substantiated using refined asymptotic formulas obtained for the eigenvalues and eigenfunctions of the corresponding spectral problem. The Fourier series representing the formal solution is transformed using certain techniques, and the possibility of its term-by-term differentiation is proved. Minimal requirements are imposed on the initial data of the problem.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542514010059