Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions

The Fourier method is used to find a classical solution of the mixed problem for a first-order differential equation with involution and periodic boundary conditions. The application of the Fourier method is substantiated using refined asymptotic formulas obtained for the eigenvalues and eigenfuncti...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics Vol. 54; no. 1; pp. 1 - 10
Main Author: Burlutskaya, M. Sh
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01.01.2014
Springer Nature B.V
Subjects:
ISSN:0965-5425, 1555-6662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Fourier method is used to find a classical solution of the mixed problem for a first-order differential equation with involution and periodic boundary conditions. The application of the Fourier method is substantiated using refined asymptotic formulas obtained for the eigenvalues and eigenfunctions of the corresponding spectral problem. The Fourier series representing the formal solution is transformed using certain techniques, and the possibility of its term-by-term differentiation is proved. Minimal requirements are imposed on the initial data of the problem.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542514010059