Navigation of a Fuzzy-Controlled Wheeled Robot Through the Combination of Expert Knowledge and Data-Driven Multiobjective Evolutionary Learning

This article proposes a navigation scheme for a wheeled robot in unknown environments. The navigation scheme consists of obstacle boundary following (OBF), target seeking (TS), and vertex point seeking (VPS) behaviors and a behavior supervisor. The OBF behavior is achieved by a fuzzy controller (FC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 52; H. 8; S. 7388 - 7401
Hauptverfasser: Juang, Chia-Feng, Chou, Ching-Yu, Lin, Chin-Teng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes a navigation scheme for a wheeled robot in unknown environments. The navigation scheme consists of obstacle boundary following (OBF), target seeking (TS), and vertex point seeking (VPS) behaviors and a behavior supervisor. The OBF behavior is achieved by a fuzzy controller (FC). This article formulates the FC design problem as a new constrained multiobjective optimization problem and finds a set of nondominated FC solutions through the combination of expert knowledge and data-driven multiobjective ant colony optimization. The TS behavior is achieved by new fuzzy proportional-integral-derivative (PID) and proportional-derivative (PD) controllers that control the orientation and speed of the robot, respectively. The VPS behavior is proposed to shorten the navigation route by controlling the robot to move toward a new subgoal determined from the vertex point of an obstacle. A new behavior supervisor that manages the switching among the OBF, TS, and VPS behaviors in unknown environments is proposed. In the navigation of a real robot, a new robot localization method through the fusion of encoders and an infrared localization sensor using a particle filter is proposed. Finally, this article presents simulations and experiments to verify the feasibility and advantages of the navigation scheme.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.3041269