Input-to-state stability of infinite-dimensional control systems

We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs, the existence of an ISS-Lyapunov function implies the ISS of a system. Then for the case of systems described by abstract equations in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics of control, signals, and systems Ročník 25; číslo 1; s. 1 - 35
Hlavní autori: Dashkovskiy, Sergey, Mironchenko, Andrii
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer-Verlag 01.03.2013
Springer Nature B.V
Predmet:
ISSN:0932-4194, 1435-568X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs, the existence of an ISS-Lyapunov function implies the ISS of a system. Then for the case of systems described by abstract equations in Banach spaces, we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system, the linear approximation of which is ISS. In order to study the interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0932-4194
1435-568X
DOI:10.1007/s00498-012-0090-2