Real-time Nonlinear Model Predictive Control (NMPC) Strategies using Physics-Based Models for Advanced Lithium-ion Battery Management System (BMS)
Optimal operation of lithium-ion batteries requires robust battery models for advanced battery management systems (ABMS). A nonlinear model predictive control strategy is proposed that directly employs the pseudo-two-dimensional (P2D) model for making predictions. Using robust and efficient model si...
Uloženo v:
| Vydáno v: | Journal of the Electrochemical Society Ročník 167; číslo 6 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IOP Publishing
06.04.2020
|
| Témata: | |
| ISSN: | 0013-4651, 1945-7111 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Optimal operation of lithium-ion batteries requires robust battery models for advanced battery management systems (ABMS). A nonlinear model predictive control strategy is proposed that directly employs the pseudo-two-dimensional (P2D) model for making predictions. Using robust and efficient model simulation algorithms developed previously, the computational time of the nonlinear model predictive control algorithm is quantified, and the ability to use such models for nonlinear model predictive control for ABMS is established. |
|---|---|
| Bibliografie: | JESP-19-3713 |
| ISSN: | 0013-4651 1945-7111 |
| DOI: | 10.1149/1945-7111/ab7bd7 |