Symbolic-numerical solution of systems of linear ordinary differential equations with required accuracy

In the paper, a symbolic-numerical algorithm for solving systems of ordinary linear differential equations with constant coefficients and compound right-hand sides. The algorithm is based on the Laplace transform. A part of the algorithm determines the error of calculation that is sufficient for the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Programming and computer software Ročník 39; číslo 3; s. 150 - 157
Hlavní autoři: Malaschonok, N. A., Rybakov, M. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht SP MAIK Nauka/Interperiodica 01.05.2013
Springer Nature B.V
Témata:
ISSN:0361-7688, 1608-3261
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the paper, a symbolic-numerical algorithm for solving systems of ordinary linear differential equations with constant coefficients and compound right-hand sides. The algorithm is based on the Laplace transform. A part of the algorithm determines the error of calculation that is sufficient for the required accuracy of the solution of the system. The algorithm is efficient in solving systems of differential equations of large size and is capable of choosing methods for solving the algebraic system (the image of the Laplace transform) depending on its type; by doing so the efficiency of the solution of the original system is optimized. The algorithm is a part of the library of algorithms of the Mathpar system [15].
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0361-7688
1608-3261
DOI:10.1134/S0361768813030043