Stochastic Dual Simplex Algorithm: A Novel Heuristic Optimization Algorithm
A new heuristic optimization algorithm is presented to solve the nonlinear optimization problems. The proposed algorithm utilizes a stochastic method to achieve the optimal point based on simplex techniques. A dual simplex is distributed stochastically in the search space to find the best optimal po...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 51; číslo 5; s. 2725 - 2734 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A new heuristic optimization algorithm is presented to solve the nonlinear optimization problems. The proposed algorithm utilizes a stochastic method to achieve the optimal point based on simplex techniques. A dual simplex is distributed stochastically in the search space to find the best optimal point. Simplexes share the best and worst vertices of one another to move better through search space. The proposed algorithm is applied to 25 well-known benchmarks, and its performance is compared with grey wolf optimizer (GWO), particle swarm optimization (PSO), Nelder-Mead simplex algorithm, hybrid GWO combined with pattern search (hGWO-PS), and hybrid GWO algorithm combined with random exploratory search algorithm (hGWO-RES). The numerical results show that the proposed algorithm, called stochastic dual simplex algorithm (SDSA), has a competitive performance in terms of accuracy and complexity. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2267 2168-2275 2168-2275 |
| DOI: | 10.1109/TCYB.2019.2931288 |