Stochastic Dual Simplex Algorithm: A Novel Heuristic Optimization Algorithm

A new heuristic optimization algorithm is presented to solve the nonlinear optimization problems. The proposed algorithm utilizes a stochastic method to achieve the optimal point based on simplex techniques. A dual simplex is distributed stochastically in the search space to find the best optimal po...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 51; číslo 5; s. 2725 - 2734
Hlavní autori: Zandavi, Seid Miad, Chung, Vera Yuk Ying, Anaissi, Ali
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A new heuristic optimization algorithm is presented to solve the nonlinear optimization problems. The proposed algorithm utilizes a stochastic method to achieve the optimal point based on simplex techniques. A dual simplex is distributed stochastically in the search space to find the best optimal point. Simplexes share the best and worst vertices of one another to move better through search space. The proposed algorithm is applied to 25 well-known benchmarks, and its performance is compared with grey wolf optimizer (GWO), particle swarm optimization (PSO), Nelder-Mead simplex algorithm, hybrid GWO combined with pattern search (hGWO-PS), and hybrid GWO algorithm combined with random exploratory search algorithm (hGWO-RES). The numerical results show that the proposed algorithm, called stochastic dual simplex algorithm (SDSA), has a competitive performance in terms of accuracy and complexity.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2019.2931288