Optimization of electric distribution network configuration for power loss reduction based on enhanced binary cuckoo search algorithm

•An enhanced binary cuckoo search (EBCSA) is proposed for solving the NR problem.•A local search mechanism is added EBCSA to exploit around the best so far solution.•The EBCSA has better performance in comparison to BCSA, BCOA, BGA and BPSO.•The effect of types of the transfer function to EBCSA'...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & electrical engineering Ročník 90; s. 106893
Hlavní autoři: Nguyen, Thuan Thanh, Nguyen, Thang Trung, Le, Bac
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Ltd 01.03.2021
Elsevier BV
Témata:
ISSN:0045-7906, 1879-0755
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •An enhanced binary cuckoo search (EBCSA) is proposed for solving the NR problem.•A local search mechanism is added EBCSA to exploit around the best so far solution.•The EBCSA has better performance in comparison to BCSA, BCOA, BGA and BPSO.•The effect of types of the transfer function to EBCSA's efficiency is evaluated.•The effect of the control parameters of EBCSA to the NR problem is analyzed. This paper presents a new network reconfiguration (NR) method using enhanced binary cuckoo search algorithm (EBCSA) to reduce power loss in the distribution system. Enhanced binary cuckoo search algorithm (EBCSA) is developed by transferring the continuous cuckoo search algorithm (CSA) to the binary domain and adding a new local search mechanism. Calculation results on different test systems demonstrate that EBCSA has capability for searching the optimal network configuration with greater success rate, better optimal solution quality and smaller number of average convergence iterations than those of binary CSA, binary coyote optimization algorithm, binary genetic algorithm and binary particle swarm optimization. Furthermore, the effect of the transfer function transferring from continuous domain to binary domain and the value of the parameters of EBCSA for the NR problem are also evaluated to choose the suitable values. The results show that EBCSA is a tool worth considering for the NR problem. [Display omitted]
AbstractList •An enhanced binary cuckoo search (EBCSA) is proposed for solving the NR problem.•A local search mechanism is added EBCSA to exploit around the best so far solution.•The EBCSA has better performance in comparison to BCSA, BCOA, BGA and BPSO.•The effect of types of the transfer function to EBCSA's efficiency is evaluated.•The effect of the control parameters of EBCSA to the NR problem is analyzed. This paper presents a new network reconfiguration (NR) method using enhanced binary cuckoo search algorithm (EBCSA) to reduce power loss in the distribution system. Enhanced binary cuckoo search algorithm (EBCSA) is developed by transferring the continuous cuckoo search algorithm (CSA) to the binary domain and adding a new local search mechanism. Calculation results on different test systems demonstrate that EBCSA has capability for searching the optimal network configuration with greater success rate, better optimal solution quality and smaller number of average convergence iterations than those of binary CSA, binary coyote optimization algorithm, binary genetic algorithm and binary particle swarm optimization. Furthermore, the effect of the transfer function transferring from continuous domain to binary domain and the value of the parameters of EBCSA for the NR problem are also evaluated to choose the suitable values. The results show that EBCSA is a tool worth considering for the NR problem. [Display omitted]
This paper presents a new network reconfiguration (NR) method using enhanced binary cuckoo search algorithm (EBCSA) to reduce power loss in the distribution system. Enhanced binary cuckoo search algorithm (EBCSA) is developed by transferring the continuous cuckoo search algorithm (CSA) to the binary domain and adding a new local search mechanism. Calculation results on different test systems demonstrate that EBCSA has capability for searching the optimal network configuration with greater success rate, better optimal solution quality and smaller number of average convergence iterations than those of binary CSA, binary coyote optimization algorithm, binary genetic algorithm and binary particle swarm optimization. Furthermore, the effect of the transfer function transferring from continuous domain to binary domain and the value of the parameters of EBCSA for the NR problem are also evaluated to choose the suitable values. The results show that EBCSA is a tool worth considering for the NR problem.
ArticleNumber 106893
Author Nguyen, Thang Trung
Le, Bac
Nguyen, Thuan Thanh
Author_xml – sequence: 1
  givenname: Thuan Thanh
  surname: Nguyen
  fullname: Nguyen, Thuan Thanh
  email: nguyenthanhthuan@iuh.edu.vn
  organization: Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
– sequence: 2
  givenname: Thang Trung
  surname: Nguyen
  fullname: Nguyen, Thang Trung
  email: nguyentrungthang@tdtu.edu.vn
  organization: Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
– sequence: 3
  givenname: Bac
  surname: Le
  fullname: Le, Bac
  email: lhbac@fit.hcmus.edu.vn
  organization: Faculty of Information Technology, University of Science, Ho Chi Minh City, Vietnam
BookMark eNqNkU1v3CAQhlGVSt2k_Q9UPXsLtvGaU1Wt-iVFyqU9I8DDLhsvuANu1N7zv4vXPVQ55TQD887LzMM1uQoxACFvOdtyxrv3p62N5wlGsBAO25rVy33Xy-YF2fB-Jyu2E-KKbBhrRbWTrHtFrlM6sXLueL8hj3dT9mf_R2cfA42OLlYZvaWDTyWa-VIIkB8i3lMbg_OHGVe5i0in-ABIx5gSRRhmeykYnWCgJYFw1MGW3Pig8Te1s72PkSbQaI9Uj4eIPh_Pr8lLp8cEb_7FG_Lj86fv-6_V7d2Xb_uPt5VtWpkrbgA0b0Xvhp00rZAtdKJjvRgYCNFq0QN3XBrXaO0aN3QD72ojrRRGmiJobsi71XfC-HOGlNUpzhjKk6oWtWxqwdq-qOSqsljWQnBqQn8u4yvO1EJdndR_1NVCXa3US--HJ73W5wutjNqPz3LYrw5QQPzygCpZDwtEj-Vr1BD9M1z-ArPUrI0
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108269
crossref_primary_10_3390_ma15186450
crossref_primary_10_3390_su162310307
crossref_primary_10_1016_j_comnet_2022_109555
crossref_primary_10_1049_gtd2_70144
crossref_primary_10_1002_cae_22689
crossref_primary_10_1038_s41598_025_01033_y
crossref_primary_10_3390_ma16155378
crossref_primary_10_1016_j_apenergy_2023_122054
crossref_primary_10_1155_2024_7792658
crossref_primary_10_3390_en17174477
crossref_primary_10_1007_s10462_022_10222_4
crossref_primary_10_1007_s00521_021_06175_4
crossref_primary_10_1134_S1064562424602282
crossref_primary_10_1016_j_compeleceng_2024_109560
crossref_primary_10_3390_en18154180
crossref_primary_10_3390_app15126423
crossref_primary_10_3390_en17153798
crossref_primary_10_1007_s00202_024_02493_7
Cites_doi 10.1007/s00202-019-00755-3
10.1016/j.asoc.2019.105720
10.1007/s00521-013-1525-5
10.1016/j.asoc.2016.12.018
10.1007/s11047-009-9175-3
10.1007/s10092-018-0274-3
10.1049/iet-gtd.2017.0338
10.1109/61.25627
10.1016/j.epsr.2009.05.004
10.1109/TPWRD.2005.852335
10.1016/j.engappai.2010.02.005
10.1109/59.207317
10.1016/j.swevo.2012.09.002
10.1016/j.ijepes.2015.11.039
10.1016/j.epsr.2018.12.030
10.1016/j.epsr.2019.105943
10.1109/TPWRS.2011.2174258
10.1016/j.epsr.2016.09.017
10.5539/mas.v3n4p98
10.1109/61.58002
10.1007/s40095-014-0073-9
10.3233/FI-2019-1795
10.3233/FI-2019-1796
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Mar 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2020.106893
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2020_106893
S0045790620307461
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c349t-1beea1458fd79b4594e656085d0e554a58e1f19bf3aaf3fd6d162b9c95b9b5543
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000643671500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Sun Nov 09 07:10:08 EST 2025
Sat Nov 29 07:29:18 EST 2025
Tue Nov 18 21:48:56 EST 2025
Fri Feb 23 02:46:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Power loss
Network reconfiguration
Transfer function
Enhanced binary cuckoo search
Electric distribution network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-1beea1458fd79b4594e656085d0e554a58e1f19bf3aaf3fd6d162b9c95b9b5543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2529325048
PQPubID 2045266
ParticipantIDs proquest_journals_2529325048
crossref_primary_10_1016_j_compeleceng_2020_106893
crossref_citationtrail_10_1016_j_compeleceng_2020_106893
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2020_106893
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Abu Arqub (bib0023) 2019; 166
Karimianfard, Haghighat (bib0003) 2019; 176
Chiang, Jean-Jumeau (bib0026) 1990; 5
Souifi, Kahouli, Hadj Abdallah (bib0001) 2019
Kennedy, Eberhart (bib0021) 1997; 5
Ahmadi, Martí (bib0028) 2015; 1
Mohd Zin, Ferdavani, Khairuddin A, Naeini (bib0031) 2012; 27
Sedighizadeh, Dakhem, Sarvi, Kordkheili (bib0013) 2014; 5
Bottura, Bernardes, Oleskovicz, Asada (bib0009) 2017; 143
Nguyen, Nguyen, Truong, Nguyen, Phung (bib0004) 2017; 52
Jasthi, Das (bib0030) 2018; 12
Abdelaziz, Mohammed, Mekhamer, Badr (bib0002) 2009; 79
Vadivoo, Slochanal (bib0012) 2009; 3
Niknam, Azad Farsani (bib0006) 2010; 23
Haupt, Haupt (bib0017) 2004
Abu Arqub (bib0022) 2018; 55
Sambaiah, Jayabarathi (bib0005) 2019; 0
Abu Arqub (bib0008) 2019; 166
Nguyen, Nguyen, Duong, Doan (bib0010) 2019
Yang, Deb (bib0015) 2009
Mirjalili, Lewis (bib0020) 2013; 9
Das (bib0027) 2006; 21
Baran, Wu (bib0024) 1989; 4
Pierezan, Dos Santos Coelho (bib0016) 2018
Nguyen, Nguyen (bib0007) 2019; 84
Pegado, Ñaupari, Molina, Castillo (bib0014) 2019; 169
Rashedi, Nezamabadi-Pour, Saryazdi (bib0019) 2010; 9
Mirjalili, Mirjalili, Yang (bib0018) 2014; 25
Nara, Shiose, Kitagawa, Ishihara (bib0011) 1992; 7
Bayat, Bagheri, Noroozian (bib0025) 2016; 77
Mantovani, Casari, Romero (bib0029) 2000; 11
Haupt (10.1016/j.compeleceng.2020.106893_bib0017) 2004
Mohd Zin (10.1016/j.compeleceng.2020.106893_bib0031) 2012; 27
Rashedi (10.1016/j.compeleceng.2020.106893_bib0019) 2010; 9
Pierezan (10.1016/j.compeleceng.2020.106893_bib0016) 2018
Nguyen (10.1016/j.compeleceng.2020.106893_bib0004) 2017; 52
Karimianfard (10.1016/j.compeleceng.2020.106893_bib0003) 2019; 176
Nguyen (10.1016/j.compeleceng.2020.106893_bib0010) 2019
Pegado (10.1016/j.compeleceng.2020.106893_bib0014) 2019; 169
Abdelaziz (10.1016/j.compeleceng.2020.106893_bib0002) 2009; 79
Abu Arqub (10.1016/j.compeleceng.2020.106893_bib0008) 2019; 166
Bayat (10.1016/j.compeleceng.2020.106893_bib0025) 2016; 77
Abu Arqub (10.1016/j.compeleceng.2020.106893_bib0023) 2019; 166
Abu Arqub (10.1016/j.compeleceng.2020.106893_bib0022) 2018; 55
Mirjalili (10.1016/j.compeleceng.2020.106893_bib0020) 2013; 9
Chiang (10.1016/j.compeleceng.2020.106893_bib0026) 1990; 5
Mirjalili (10.1016/j.compeleceng.2020.106893_bib0018) 2014; 25
Nguyen (10.1016/j.compeleceng.2020.106893_bib0007) 2019; 84
Sedighizadeh (10.1016/j.compeleceng.2020.106893_bib0013) 2014; 5
Das (10.1016/j.compeleceng.2020.106893_bib0027) 2006; 21
Sambaiah (10.1016/j.compeleceng.2020.106893_bib0005) 2019; 0
Niknam (10.1016/j.compeleceng.2020.106893_bib0006) 2010; 23
Bottura (10.1016/j.compeleceng.2020.106893_bib0009) 2017; 143
Jasthi (10.1016/j.compeleceng.2020.106893_bib0030) 2018; 12
Ahmadi (10.1016/j.compeleceng.2020.106893_bib0028) 2015; 1
Kennedy (10.1016/j.compeleceng.2020.106893_bib0021) 1997; 5
Vadivoo (10.1016/j.compeleceng.2020.106893_bib0012) 2009; 3
Nara (10.1016/j.compeleceng.2020.106893_bib0011) 1992; 7
Souifi (10.1016/j.compeleceng.2020.106893_bib0001) 2019
Mantovani (10.1016/j.compeleceng.2020.106893_bib0029) 2000; 11
Baran (10.1016/j.compeleceng.2020.106893_bib0024) 1989; 4
Yang (10.1016/j.compeleceng.2020.106893_bib0015) 2009
References_xml – volume: 23
  start-page: 1340
  year: 2010
  end-page: 1349
  ident: bib0006
  article-title: A hybrid self-adaptive particle swarm optimization and modified shuffled frog leaping algorithm for distribution feeder reconfiguration
  publication-title: Eng Appl Artif Intell
– volume: 5
  start-page: 4
  year: 1997
  end-page: 8
  ident: bib0021
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: IEEE international conference on systems, man, and cybernetics computational cybernetics and simulation
– volume: 169
  start-page: 206
  year: 2019
  end-page: 213
  ident: bib0014
  article-title: Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO
  publication-title: Electric Power Syst Res
– volume: 5
  start-page: 1568
  year: 1990
  end-page: 1574
  ident: bib0026
  article-title: Optimal network reconfigurations in distribution systems: part 2: solution algorithms and numerical results
  publication-title: IEEE Trans Power Delivery
– volume: 3
  start-page: 98
  year: 2009
  end-page: 110
  ident: bib0012
  article-title: Distribution system restoration using genetic algorithm with distributed generation
  publication-title: Modern Appl Sci
– volume: 79
  start-page: 1521
  year: 2009
  end-page: 1530
  ident: bib0002
  article-title: Distribution systems reconfiguration using a modified particle swarm optimization algorithm
  publication-title: Electric Power Syst Res
– volume: 0
  start-page: 1
  year: 2019
  end-page: 29
  ident: bib0005
  article-title: Optimal reconfiguration and renewable distributed generation allocation in electric distribution systems
  publication-title: Int J Ambient Energy
– volume: 52
  start-page: 93
  year: 2017
  end-page: 108
  ident: bib0004
  article-title: Multi-objective electric distribution network reconfiguration solution using runner-root algorithm
  publication-title: Appl Soft Comput
– volume: 11
  start-page: 150
  year: 2000
  end-page: 159
  ident: bib0029
  article-title: Reconfiguração de sistemas de distribuição radiais utilizando o critério de queda de tensão
  publication-title: Controle e Automação
– year: 2019
  ident: bib0001
  article-title: Multi-objective distribution network reconfiguration optimization problem
  publication-title: Electr Eng
– volume: 166
  start-page: 111
  year: 2019
  end-page: 137
  ident: bib0023
  article-title: Numerical algorithm for the solutions of fractional order systems of dirichlet function types with comparative analysis
  publication-title: Fundam Inform
– volume: 27
  start-page: 968
  year: 2012
  end-page: 974
  ident: bib0031
  article-title: Reconfiguration of radial electrical distribution network through minimum-current circular-updating-mechanism method
  publication-title: IEEE Trans Power Syst
– volume: 176
  year: 2019
  ident: bib0003
  article-title: An initial-point strategy for optimizing distribution system reconfiguration
  publication-title: Electric Power Syst Res
– year: 2004
  ident: bib0017
  article-title: Practical genetic algorithms
– volume: 4
  start-page: 1401
  year: 1989
  end-page: 1407
  ident: bib0024
  article-title: Network reconfiguration in distribution systems for loss reduction and load balancing
  publication-title: IEEE Trans Power Delivery
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: bib0020
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol Comput
– start-page: 210
  year: 2009
  end-page: 214
  ident: bib0015
  article-title: World congress on nature and biologically inspired computing
  publication-title: NABIC 2009 - proceedings
– volume: 166
  start-page: 87
  year: 2019
  end-page: 110
  ident: bib0008
  article-title: Application of residual power series method for the solution of time-fractional schrödinger equations in one-dimensional space
  publication-title: Fundam Inform
– volume: 5
  start-page: 73
  year: 2014
  ident: bib0013
  article-title: Optimal reconfiguration and capacitor placement for power loss reduction of distribution system using improved binary particle swarm optimization
  publication-title: Int J Energy Environ Eng
– volume: 84
  year: 2019
  ident: bib0007
  article-title: An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration
  publication-title: Appl Soft Comput
– volume: 21
  start-page: 202
  year: 2006
  end-page: 209
  ident: bib0027
  article-title: A fuzzy multiobjective approach for network reconfiguration of distribution systems
  publication-title: IEEE Trans Power Delivery
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib0016
  article-title: Coyote optimization algorithm: a new metaheuristic for global optimization problems
  publication-title: IEEE congress on evolutionary computation (CEC)
– volume: 77
  start-page: 360
  year: 2016
  end-page: 371
  ident: bib0025
  article-title: Optimal siting and sizing of distributed generation accompanied by reconfiguration of distribution networks for maximum loss reduction by using a new UVDA-based heuristic method
  publication-title: Int J Electrical Power Energy Syst
– volume: 1
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib0028
  article-title: Minimum-loss network reconfiguration: a minimum spanning tree problem. Sustainable Energy
  publication-title: Grids Networks
– volume: 7
  start-page: 1044
  year: 1992
  end-page: 1051
  ident: bib0011
  article-title: Implementation of genetic algorithm for distribution systems loss minimum re-configuration
  publication-title: IEEE Trans Power Syst
– volume: 55
  year: 2018
  ident: bib0022
  article-title: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm
  publication-title: Calcolo
– volume: 12
  start-page: 1303
  year: 2018
  end-page: 1313
  ident: bib0030
  article-title: Simultaneous distribution system reconfiguration and DG sizing algorithm without load flow solution. IET Generation
  publication-title: Trans Distribut
– volume: 9
  start-page: 727
  year: 2010
  end-page: 745
  ident: bib0019
  article-title: BGSA: binary gravitational search algorithm
  publication-title: Nat Comput
– volume: 25
  start-page: 663
  year: 2014
  end-page: 681
  ident: bib0018
  article-title: Binary bat algorithm
  publication-title: Neural Comput Appl
– start-page: 0
  year: 2019
  ident: bib0010
  article-title: Optimal operation of transmission power networks by using improved stochastic fractal search algorithm
  publication-title: Neural Comput Appl
– volume: 143
  start-page: 400
  year: 2017
  end-page: 408
  ident: bib0009
  article-title: Setting directional overcurrent protection parameters using hybrid GA optimizer
  publication-title: Electric Power Syst Res
– year: 2019
  ident: 10.1016/j.compeleceng.2020.106893_bib0001
  article-title: Multi-objective distribution network reconfiguration optimization problem
  publication-title: Electr Eng
  doi: 10.1007/s00202-019-00755-3
– volume: 84
  year: 2019
  ident: 10.1016/j.compeleceng.2020.106893_bib0007
  article-title: An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105720
– volume: 25
  start-page: 663
  year: 2014
  ident: 10.1016/j.compeleceng.2020.106893_bib0018
  article-title: Binary bat algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1525-5
– year: 2004
  ident: 10.1016/j.compeleceng.2020.106893_bib0017
– start-page: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2020.106893_bib0016
  article-title: Coyote optimization algorithm: a new metaheuristic for global optimization problems
– volume: 52
  start-page: 93
  year: 2017
  ident: 10.1016/j.compeleceng.2020.106893_bib0004
  article-title: Multi-objective electric distribution network reconfiguration solution using runner-root algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.12.018
– volume: 9
  start-page: 727
  year: 2010
  ident: 10.1016/j.compeleceng.2020.106893_bib0019
  article-title: BGSA: binary gravitational search algorithm
  publication-title: Nat Comput
  doi: 10.1007/s11047-009-9175-3
– volume: 55
  year: 2018
  ident: 10.1016/j.compeleceng.2020.106893_bib0022
  article-title: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm
  publication-title: Calcolo
  doi: 10.1007/s10092-018-0274-3
– volume: 11
  start-page: 150
  year: 2000
  ident: 10.1016/j.compeleceng.2020.106893_bib0029
  article-title: Reconfiguração de sistemas de distribuição radiais utilizando o critério de queda de tensão
  publication-title: Controle e Automação
– volume: 0
  start-page: 1
  year: 2019
  ident: 10.1016/j.compeleceng.2020.106893_bib0005
  article-title: Optimal reconfiguration and renewable distributed generation allocation in electric distribution systems
  publication-title: Int J Ambient Energy
– volume: 12
  start-page: 1303
  year: 2018
  ident: 10.1016/j.compeleceng.2020.106893_bib0030
  article-title: Simultaneous distribution system reconfiguration and DG sizing algorithm without load flow solution. IET Generation
  publication-title: Trans Distribut
  doi: 10.1049/iet-gtd.2017.0338
– volume: 1
  start-page: 1
  year: 2015
  ident: 10.1016/j.compeleceng.2020.106893_bib0028
  article-title: Minimum-loss network reconfiguration: a minimum spanning tree problem. Sustainable Energy
  publication-title: Grids Networks
– volume: 4
  start-page: 1401
  year: 1989
  ident: 10.1016/j.compeleceng.2020.106893_bib0024
  article-title: Network reconfiguration in distribution systems for loss reduction and load balancing
  publication-title: IEEE Trans Power Delivery
  doi: 10.1109/61.25627
– start-page: 210
  year: 2009
  ident: 10.1016/j.compeleceng.2020.106893_bib0015
  article-title: World congress on nature and biologically inspired computing
– volume: 79
  start-page: 1521
  year: 2009
  ident: 10.1016/j.compeleceng.2020.106893_bib0002
  article-title: Distribution systems reconfiguration using a modified particle swarm optimization algorithm
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2009.05.004
– volume: 21
  start-page: 202
  year: 2006
  ident: 10.1016/j.compeleceng.2020.106893_bib0027
  article-title: A fuzzy multiobjective approach for network reconfiguration of distribution systems
  publication-title: IEEE Trans Power Delivery
  doi: 10.1109/TPWRD.2005.852335
– volume: 23
  start-page: 1340
  year: 2010
  ident: 10.1016/j.compeleceng.2020.106893_bib0006
  article-title: A hybrid self-adaptive particle swarm optimization and modified shuffled frog leaping algorithm for distribution feeder reconfiguration
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.02.005
– start-page: 0
  year: 2019
  ident: 10.1016/j.compeleceng.2020.106893_bib0010
  article-title: Optimal operation of transmission power networks by using improved stochastic fractal search algorithm
  publication-title: Neural Comput Appl
– volume: 7
  start-page: 1044
  year: 1992
  ident: 10.1016/j.compeleceng.2020.106893_bib0011
  article-title: Implementation of genetic algorithm for distribution systems loss minimum re-configuration
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.207317
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.compeleceng.2020.106893_bib0020
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2012.09.002
– volume: 5
  start-page: 4
  year: 1997
  ident: 10.1016/j.compeleceng.2020.106893_bib0021
  article-title: A discrete binary version of the particle swarm algorithm
– volume: 77
  start-page: 360
  year: 2016
  ident: 10.1016/j.compeleceng.2020.106893_bib0025
  article-title: Optimal siting and sizing of distributed generation accompanied by reconfiguration of distribution networks for maximum loss reduction by using a new UVDA-based heuristic method
  publication-title: Int J Electrical Power Energy Syst
  doi: 10.1016/j.ijepes.2015.11.039
– volume: 169
  start-page: 206
  year: 2019
  ident: 10.1016/j.compeleceng.2020.106893_bib0014
  article-title: Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2018.12.030
– volume: 176
  year: 2019
  ident: 10.1016/j.compeleceng.2020.106893_bib0003
  article-title: An initial-point strategy for optimizing distribution system reconfiguration
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2019.105943
– volume: 27
  start-page: 968
  year: 2012
  ident: 10.1016/j.compeleceng.2020.106893_bib0031
  article-title: Reconfiguration of radial electrical distribution network through minimum-current circular-updating-mechanism method
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2174258
– volume: 143
  start-page: 400
  year: 2017
  ident: 10.1016/j.compeleceng.2020.106893_bib0009
  article-title: Setting directional overcurrent protection parameters using hybrid GA optimizer
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2016.09.017
– volume: 3
  start-page: 98
  year: 2009
  ident: 10.1016/j.compeleceng.2020.106893_bib0012
  article-title: Distribution system restoration using genetic algorithm with distributed generation
  publication-title: Modern Appl Sci
  doi: 10.5539/mas.v3n4p98
– volume: 5
  start-page: 1568
  year: 1990
  ident: 10.1016/j.compeleceng.2020.106893_bib0026
  article-title: Optimal network reconfigurations in distribution systems: part 2: solution algorithms and numerical results
  publication-title: IEEE Trans Power Delivery
  doi: 10.1109/61.58002
– volume: 5
  start-page: 73
  year: 2014
  ident: 10.1016/j.compeleceng.2020.106893_bib0013
  article-title: Optimal reconfiguration and capacitor placement for power loss reduction of distribution system using improved binary particle swarm optimization
  publication-title: Int J Energy Environ Eng
  doi: 10.1007/s40095-014-0073-9
– volume: 166
  start-page: 87
  year: 2019
  ident: 10.1016/j.compeleceng.2020.106893_bib0008
  article-title: Application of residual power series method for the solution of time-fractional schrödinger equations in one-dimensional space
  publication-title: Fundam Inform
  doi: 10.3233/FI-2019-1795
– volume: 166
  start-page: 111
  year: 2019
  ident: 10.1016/j.compeleceng.2020.106893_bib0023
  article-title: Numerical algorithm for the solutions of fractional order systems of dirichlet function types with comparative analysis
  publication-title: Fundam Inform
  doi: 10.3233/FI-2019-1796
SSID ssj0004618
Score 2.3513548
Snippet •An enhanced binary cuckoo search (EBCSA) is proposed for solving the NR problem.•A local search mechanism is added EBCSA to exploit around the best so far...
This paper presents a new network reconfiguration (NR) method using enhanced binary cuckoo search algorithm (EBCSA) to reduce power loss in the distribution...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106893
SubjectTerms Algorithms
Configurations
Continuity (mathematics)
Domains
Electric distribution network
Electric power distribution
Electric power loss
Enhanced binary cuckoo search
Genetic algorithms
Loss reduction
Network reconfiguration
Optimization
Particle swarm optimization
Power loss
Reconfiguration
Search algorithms
Transfer function
Transfer functions
Title Optimization of electric distribution network configuration for power loss reduction based on enhanced binary cuckoo search algorithm
URI https://dx.doi.org/10.1016/j.compeleceng.2020.106893
https://www.proquest.com/docview/2529325048
Volume 90
WOSCitedRecordID wos000643671500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWqDiF4QHyKsYGMxFsVtCROYkt7mdAQoGkgUVDfosS1225dUqXNNH4Af4Jfy72xnYTBpCLESxTFdZzknF7fOPeeS8irmMUw7yvfE5plHpBCermQ2uMyEUqDPxs0ijdfT5LTUz6ZiE-DwQ-XC3O5TIqCX12J1X-FGo4B2Jg6-xdwtyeFA7APoMMWYIftVsB_BCNwYbMr0RU0hW4WEr_FtOWtRoUJ_8aoc72Y1VUXc7jCummjJUyeowp1XZsGnOym-GFBFXMTM5CbRF5Zy_OyHNnFk2w5K6vFZn7R93ld4Yh1QzN3OUAN1WkhtmvSs_qbMYTjeQ2mZwyjzf_UmBWz0biqu54nynw-kf11jKAXyGUW11yCTRfN1BhshoqaB1Yt29honmDelVH3dUbc1Bz9bT4wSxNnCOcK7w9u7DUMji0xN6UZr8ltf8YhccQAzR_DN-udIIkEH5Kdo_fHkw-9rFvfzPP2Em-Tl1304A0D3uT9XPMDGudmfJ_cs28l9Miw6QEZqOIhudvTqnxEvvd5RUtNHZC0zytqeUV_4RUFXtGGVxR5RVte0YZXFHYcr6jhFTW8ooZXtOXVY_Ll7fH4zTvP1vDwZMjExvNzpTKfRVxPE5GzSDCFck88mh4o8GSziCtf-yLXYZbpUE_jqR8HYC1ElIscfhA-IcOiLNRTQjmL4NlKrsDlZjnTuQplKLMkEeB-xQHbJdw921RagXuss7JMXSTjWdqDJUVYUgPLLgnariuj8rJNp0MHYGrdVeOGpsC-bbrvO9BTaz7WaRCB-42qgvzZv519j9zp_mT7ZLipavWc3JKXm8W6emGp_BMPQNL8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+electric+distribution+network+configuration+for+power+loss+reduction+based+on+enhanced+binary+cuckoo+search+algorithm&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Nguyen%2C+Thuan+Thanh&rft.au=Nguyen%2C+Thang+Trung&rft.au=Le%2C+Bac&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=90&rft_id=info:doi/10.1016%2Fj.compeleceng.2020.106893&rft.externalDocID=S0045790620307461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon