Near-Optimal Resilient Control Strategy Design for State-Saturated Networked Systems Under Stochastic Communication Protocol
In this paper, the near-optimal resilient control strategy design problem is investigated for a class of discrete time-varying system in simultaneous presence of stochastic communication protocols (SCPs), gain perturbations, state saturations, and additive nonlinearities. In the sensor-to-controller...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 49; číslo 8; s. 3155 - 3167 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, the near-optimal resilient control strategy design problem is investigated for a class of discrete time-varying system in simultaneous presence of stochastic communication protocols (SCPs), gain perturbations, state saturations, and additive nonlinearities. In the sensor-to-controller network, only one sensor is permitted to get access to the communication media so as to avoid possible data collisions. Described by a Markov chain, the SCP is employed to determine which sensor should obtain the access to the network at a certain time. Furthermore, two kinds of well-recognized complexities (i.e., state saturations and additive nonlinearities) are considered in the system model and the phenomenon of controller gain perturbation is also taken into special consideration. Accordingly, the resilient control strategy is designed by: 1) deriving a certain upper bound on the associate cost function of underlying systems and 2) minimizing such an upper bound through the utilization of the completing-the-square technique and the Moore-Penrose pseudo inverse. The resilient control strategy is obtained in an iterative manner by solving a set of coupled backward Riccati-like recursions. Furthermore, based on the proposed control strategies, the infinite horizon case is considered and the corresponding upper bound of the cost function is explicitly provided. Finally, numerical simulations are carried out on power systems in order to verify the validity of the proposed resilient control algorithms. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2267 2168-2275 2168-2275 |
| DOI: | 10.1109/TCYB.2018.2840430 |