Hierarchical Stochastic Gradient Algorithm and its Performance Analysis for a Class of Bilinear-in-Parameter Systems

This paper considers the parameter identification for a special class of nonlinear systems, i.e., bilinear-in-parameter systems. Based on the hierarchical identification principle, a hierarchical stochastic gradient (HSG) estimation algorithm is presented. The basic idea is to decompose a bilinear-i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Circuits, systems, and signal processing Ročník 36; číslo 4; s. 1393 - 1405
Hlavní autoři: Ding, Feng, Wang, Xuehai
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2017
Springer Nature B.V
Témata:
ISSN:0278-081X, 1531-5878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper considers the parameter identification for a special class of nonlinear systems, i.e., bilinear-in-parameter systems. Based on the hierarchical identification principle, a hierarchical stochastic gradient (HSG) estimation algorithm is presented. The basic idea is to decompose a bilinear-in-parameter system into two subsystems and to derive the HSG identification algorithm for estimating the system parameters by replacing the unknown variables in the information vectors with their estimates obtained at the previous time. The convergence analysis of the proposed algorithm indicates that the parameter estimation errors converge to zero under persistent excitation conditions. The simulation results show that the proposed algorithm is effective.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-016-0367-7