Application of the Hybrid Artificial Neural Network Coupled with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over Multiple Time Horizons

Streamflow forecasting is paramount process in water and flood management, determination of river water flow potentials, environmental flow analysis, agricultural practices and hydro-power generation. However, the dynamicity, stochasticity and inherent complexities present in the temporal evolution...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water resources management Ročník 32; číslo 5; s. 1883 - 1899
Hlavní autoři: Yaseen, Zaher Mundher, Fu, Minglei, Wang, Chen, Mohtar, Wan Hanna Melini Wan, Deo, Ravinesh C., El-shafie, Ahmed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.03.2018
Springer Nature B.V
Témata:
ISSN:0920-4741, 1573-1650
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Streamflow forecasting is paramount process in water and flood management, determination of river water flow potentials, environmental flow analysis, agricultural practices and hydro-power generation. However, the dynamicity, stochasticity and inherent complexities present in the temporal evolution of streamflow could hinder the accurate and reliable forecasting of this important hydrological parameter. In this study, the uncertainty and nonstationary characteristics of streamflow data has been treated using a set of coupled data pre-processing methods before being considered as input for an artificial neural network algorithm namely; rolling mechanism (RM) and grey models (GM). The rolling mechanism method is applied to smooth out the dataset based on the antecedent values of the model inputs before being applied to the GM algorithm. The optimization of the input datasets selection was performed using auto-correlation (ACF) and partial auto-correlation (PACF) functions. The pre-processed data was then integrated with two artificial neural network models, the back propagation (RMGM-BP) and Elman Recurrent Neural Network (RMGM-ERNN). The development, training, testing and evaluation of the proposed hybrid models were undertaken using streamflow data for two tropical hydrological basins (Johor and Kelantan Rivers). The hybrid RMGM-ERNN was found to provide better results than the hybrid RMGM-BP model. Relatively good performance of the proposed hybrid models with a data pre-processing approach provides a successful alternative to achieve better accuracy in streamflow forecasting compared to the traditional artificial neural network approach without a data pre-processing scheme.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-018-1909-5